advanced
version

control
POCKET GUIDE

@ introduction

Version control plays a key role in software development, and it
is especially relevant for agile teams.

It is the cornerstone for best practices such us continuous
integration, continuous delivery and DevOps.

Only when using version control can teams implement the
"collective code ownership" and enforce the concept of being
"always ready to ship".

There is one feature that makes all modern version control
systems (Git, Mercurial, and Plastic SCM) stand out from the
previous generations - they excel on branching and merging.

The goal of this guide is to be a powerful tool for the expert
developer by explaining the key concepts to master the most
relevant merging techniques. Mastering branching and merging
is the way to master version control.

Plastic SCM Team - Boecillo Tech Park

www.plasticscm.com/company/team

® plasticscm

Many "arcane" version control systems are only capable of running 2-
way merges (SVN, CVS). That's the reason why most developers fear
merging.

All merges are manual in a 2-way merge and that's why they're
slow, boring and error-prone.

Consider the following scenario shown in the picture below: "Did |
add the 1ine 70? Or did you delete it?"

There is no way to figure this out!

And this will happen for every single change if you merge using a 2-
way merge tool. It is boring for a few files, painful for a few hundreds
and simply not doable for thousands.

Yours Mine
= Y = M
N N
30 | Print(“bye”); 30 | Print(“bye”);
S1]for i =1 to 20 51f]for i =1 to 20
70 70 | Print(result);

Find out more:
www.plasticscm.com/book/#_2 way_vs_3_way_merge

® plasticscm

All modern version control systems (Git, Hg, Plastic SCM) feature
improved merge tracking and enable 3-way merging.

3-way merge not only compares "your copy to mine". It also uses
the "base" (a.k.a. common ancestor) to find out "how the code
was before our changes".

This changes everything! Now 99% of merges will be
automatic-no manual intervention required.

Yours (Source) Base Mine (Destination)
(v 10 @

30 |Print(“bye”);

w
®

Print(“bye”);

w

0 | Print(“hello”);

S1ffor i =1 tolﬂ 51ffor i =1 tozl s1ffor i =1 toE

70 70 |Print(result); 70 | Print(result);

When you compare to the “base”, conflicts are solved this way:
* Line 3@ - automatic - it will just keep mine (I changed the line).
*Line 70 - gutomatic - the line was deleted on "source".

*Line 51 - manual - the user has to decide how to write the “for
loop”. Is it from 1 to 15? 1 to 20? 1 to 25? Or maybe write
something else?

Find out more:
www.plasticscm.com/book/#_3_way_merge

® plasticscm

@ merge contributors

When you merge between two branches, you always deal with the
merge contributors:

* The developer needs to merge 17 and 18 and the result of the
merge will be placed on branch release-52.

* The version control calculates the "common ancestor" of 17 and
18. In our scenario, the common ancestor, or base, is the
changeset 11.

* The version control will launch the 3-way merge tool for each file in

the conflict. The conflicts will be found comparing 17 and 18 to 11.
Once the merge is done, the version control will create a "merge

link" (the green arrow between 17 and "result") that will be used
to calculate the common ancestor in upcoming merges.

® plasticscm

@ merge tool layout patterns

Almost all merge tools (Araxis, Xmerge, BeyondCompare, KDiff3)
use one of the following patterns to handle the merge
contributors:

* They can use a "4-panel" layout as follows:

Yours (Source) Base Mine (Destination)

S B D

+ Or, they can use a "3-panel" layout displaying "yours" and "result"
together:

Yours (Source) Base Destination/Result

5] B D

Once you understand this, merge tools won't seem so secretive to you!

@ cherry pick

How can we apply the fix of changeset 16 to the 3.8 branch?

development v5.0

We can't just merge 16 to 17 because then we'd apply all changes
before 16 in branch 5.0 to 3.0. This would basically turn 3.0 into
5.0, which is definitely not what we want.

We just want to apply the "patch" of 16; the changes made on 16
to the 3.0 branch.

This operation is known as "Cherry Pick".

@ branch cherry pick

This is just a slightly modified "cherry pick" that allows you to
apply a "branch level patch"; it will get the changes made on the
branch, but also won't take the parent changes.

man destination result

The merge in the figure above considers the (4,8] interval;
changesets 5, 7 and 8 will be 'cherry picked', but not 2 and 4 as
would happen with a regular merge.

@ interval merge

This is yet another way to run a cherry pick. This time the
developer selects the beginning and end of the merge interval.
This way he chooses exactly what needs to be picked to merge.

The scenario in the figure will get the changes inside the interval
(4,8], which means only 5, 7 and 8 will be applied.

subtractive merge

Subtractive merge is very powerful, but you need to handle it
with care.

It is very important to understand that it is not just a "revert".
You shouldn't be using subtractives on a regular basis; it is a tool
for just special situations.

In the figure above, we need to delete the change done by
changeset 92 but keep 93, 94 and 95.

We can't just revert to 92 since we'd lose 93, 94 and 95.
What subtractive does is the following: 96=91-92+93+94+95.

It is an extremely powerful tool to "disintegrate" tasks, but you
really need to know what you're doing.

If you want to learn more about branching, merging, and Plastic SCM, take a
look at "the merge machine".
www.plasticscm.com/mergemachine

® plasticscm

(9) oves

DVCS (distributed version control system) is the concept that
took the industry by storm in the last decade.

Thanks to the new breed of tools such as Git, Mercurial, and of
course Plastic SCM, version control is no longer considered a
commodity and it is now seen as a competitive advantage.

With DVCS, teams don't depend anymore on a single central

repository (and central server) since now there can be many

clones and changes are "pushed and pulled" among them. In
the case of Plastic SCM, there can be even partial clones.

Now teams working away from the head office don't have to
suffer slow connections anymore, solving one of the classic
issues in globally distributed development.

DVCS brings freedom and flexibility to the design of the
repository and the server structure.

San Francisco London
developer 1 push /pull developer 2

Learn more about the history of version control:
www.plasticscm.com/version-control-history

® plasticscm

solving distributed conflicts

What happens when two developers work on the same branch on
different repository clones? How will they reconcile the concurrent
changes?

The figure below explains it step by step:

E LOCATION A -REPO A D LOCATION B - REPO B

Q0 ©W=0=0=0 ©@©=0=0=0

Initial situation: a branch replicated at two different
locations.

© ©O©=0=0=0=0 @=0=0=0=0=0O

Developers at the two locations make changes on
the same branch.

Location A replicates the repository at location B,
How will the conflicts be solved?

The replicated changesets can't be directly placed at the
end of the branch,
so they're correctly linked to their parents.

A“subbranch’ is created, like a parallel branch inside,
reflecting what actually happened.

A regular merge can be run to reconcile the changes replicated from the repository at Location B

® plasticscm

@ about us

Codice Software was founded back in 2005 with one goal in mind:
develop a high performance distributed version control system
for really advanced teams.

300 sprints and more than 3000 releases later, Plastic SCM helps
teams in more than 20 countries build better software. Teams in
well-known companies like Microsoft, Samsung, Pantech, HP,
Mapfre, DHL, Facepunch Studios, and TellTale. They all have
something in common: they need the best branching and

merging system, high performance, high scalability and distributed
development.

Videogame studios around the world are currently switching to
Plastic SCM because it is the only DVCS able to handle huge files,
locks and combine centralized and distributed development.

Maybe the code of your favorite videogame is already controlled
by Plastic SCM... :-)

ﬁ&‘&

b, o0
P 3‘
¢ 8

@ about semanticmerge

All our work happens to be around merging source code -
Merging files, directories, finding conflicts... creating ways to
make merging simpler and more effective.

Programmers used to ask us: "Why merge tools don't understand
the code?"

And that's why we created SemanticMerge in 2013; the first 3-
way merge tool in the market able to understand the code.

We applied all that we learned with Plastic about merging plus all
the ideas we had about how merge should be. SemanticMerge is
the first step towards semantic version control.

@ visual merge -ox
= =]
src - their changes base dst - your changes.
| “ System.Net I | = System.Net | | += System.Net |

% Socket % Socket
© GetHostByName. = 6 GetHostByName
o Listen o Listen

£ 6 Connectlo
£ 0 Send
© GetHostByName
© Rec
© Connectlo

© Send

© ConnectTo

www.semanticmerge.com

® plasticscm

