

Version Control, DevOps and Agile
Development with Plastic SCM

The Plastic SCM book

Pablo Santos Luaces

Version 1.24, 2022-01-13

TABLE OF CONTENTS
Preface . 1

About this guide. 1
Conventions used in this book. 2

Welcome . 3
Starting up. 5

Let’s map a few concepts . 5
A perfect workflow. 5

Key steps . 6
Workflow dynamics . 8
How to implement. 11
Where are you now? . 11
Are task branches mandatory in Plastic SCM? . 12

What is Plastic SCM . 12
Why would someone consider Plastic? . 12
Who is using Plastic? . 13

What is version control . 13
Plastic SCM Editions. 14
How to install Plastic . 15

If you are joining an existing project . 15
If you are tasked to evaluate Plastic. 15
Detailed installation instructions . 16

How to get help . 16
Command line vs. GUI. 16

A Plastic SCM primer . 17
Get started . 17
3 key GUI elements . 18

Workspace Explorer . 18
Pending Changes . 20
Branch Explorer . 21
There are other views but… . 23

Listing repos on different servers . 23
Create a repo . 25
Create a workspace . 25
Adding files . 27

Ignoring private files with ignore.conf. 28
Initial checkin . 29

Checkin changes . 29
Undoing changes. 30
Create a branch . 30
Diffing changesets and branches . 34

Diffing from the command line. 34
Diffing from the GUIs . 36

Merge a branch . 39

Merging from the GUI . 40
Merging from the command line . 41
Learn more . 42

Annotate/blame a file . 43
Annotate/blame from command line and GUI . 44
You annotate a given revision of a file . 45

Push and pull . 45
Learn more . 46

One task - one branch . 47
Branch per task pattern . 47
Branch naming convention . 48
Task branches are short . 50
Task branches are not feature branches . 50
Keep task branches independent . 51

What if you really need tasks to depend on each other . 52
Techniques to keep branches independent . 52

Checkin often and keep reviewers in mind . 55
Antipattern 1: Checkin only once . 55
Antipattern 2: Checkin for yourself. 55
Checkin for the reviewer . 56
Objection: But… you need to be very careful with checkins, that’s a lot of work! 57

Task branches turn plans into solid artifacts that developers can touch . 57
Handling objections . 58
Task branches as units of change . 59
What happens when a task can’t be merged automatically? . 60
We don’t delete task branches. 63
A finished task must be ready to be deployed . 64

Feature toggles . 65
Review each task . 65

How we started reviewing every single task. 66
Reviews are crucial to prevent code from rotting . 66
Reviews to find bugs . 67
How many reviewers?. 67
How to actually do the reviews . 67

Validation – exploratory tests on each task . 67
A short intro to Exploratory Testing . 68
Validation . 68
A small story on our experience with Exploratory . 69

Some extra pros of task branches . 69
Colliding worlds: serial vs. parallel development . 69
Code is always under control . 71
Keep the main branch pristine . 71
Have well-known starting points - do not shoot moving targets! . 72
Enforce baseline creation. 73
Stop bug spreading. 73

Automated tests passing on each task branch . 74

Automated tests are the gate to main . 74
The Test Pyramid. 75
Unit tests. 75
Service/Integration tests . 75
UI tests . 76
Start small. 76
Automated tests are a safety net . 76

Every release is a release candidate . 77
Extra testing – grouping releases . 78

Be selfish with tests and clean code . 79
Trunk-based development . 79

What is trunk-based development . 79
Task branches blend well with Trunk-based development. 80
Why do I insist on using task branches instead of just doing checkin? . 80

How do task branches blend with distributed development? . 81
Automation, orchestration and mergebots. 81
What about GitFlow? . 81
How to learn more. 82

Repo layout strategies. 83
What is a repository?. 83

Repository storage . 83
Number of repos and maximum size . 84
One project, one repo . 84
Xlinks: Reusable components . 85
Keep it simple - Don’t overdesign your repo structure . 86
Monorepos – don’t divide and conquer . 86
Submodules . 87
Practical advice: Fantastic repos and when to create them . 87

Keep it simple. 88
Monorepos are fine. 88
Sometimes you need Xlinks . 90

Conclusion . 90
Centralized & distributed . 91

Centralized and distributed flavors and layouts . 91
What is distributed and centralized . 91
Plastic can do centralized and distributed. 92
Is distributed better for branching and merging? . 92
On-premises and Cloud . 93
Mix distributed, centralized and Cloud . 93
Multi-site . 94
Recommended layout. 95
Proxy / cache server . 95

How replication works - push/pull . 98
Globally unique changeset numbers . 98
How push works . 100
Why normal changeset numbers don’t always match, and do we need GUIDs? 101

Push vs. pull . 102
Handling concurrent changes on replicated repos . 108

Concurrent changesets on different repos . 108
Multi-head explained . 108
Use pull to resolve concurrent changes on your repo . 109

Sources of truth in distributed development . 111
Single source of truth . 111
Shared sources of truth . 112
Our recommended option – single source of truth and not exact clones . 115
Exact clones . 118

Partial replicas . 118
Replica in Plastic vs. Git . 119
The dual lives of changesets . 120
A trick to replicate just a single changeset from main . 124
Merge history and partial replicas . 125

Xlinks with distributed repos . 126
Branching . 131

Every repository starts with a main branch. 131
Every changeset belongs to a branch . 131
Creating branches is cheap . 132
Branches have their own metadata . 132
Branch hierarchies . 133

Child branches . 133
Top level branches . 134
A meaningful branch hierarchy . 135
Subbranches . 136

Delete empty branches only . 136
Changesets can be moved to a different branch . 137
Diff branches . 138

Merge and conflict resolution . 141
Merge defined . 141

Born to merge . 141
Merge from a branch . 141
Merge from a changeset . 143

Merge contributors . 143
Repositories are graphs of changesets . 143
Arrow direction . 145
Merge contributors: source, destination and base . 147
Plastic always creates a changeset as result of the merge. 150
Graphs with potential merge conflicts. 151

2-way vs. 3-way merge . 152
2-way merge: life before common ancestors . 152
3-way merge . 153
Layout of 3-way merge tools . 156

Merge tracking. 158
Calculating the common ancestor . 158

Merging trees . 160
Changeset-based merge tracking . 165
Why merge tracking matters. 167
Recursive merge - intro . 171
Recursive merge – more than 2 ancestors . 173
Recursive merge – why it is better than just choosing one ancestor . 174

Plastic merge terminology . 177
Directory merges. 178

Directories are first-class citizens . 178
Diffing moves. 181
Merging moved files . 184
Change/delete conflict . 186
Add/move conflict . 187
Move/delete conflict . 188
Evil twin conflict . 190
Moved evil twin conflict . 190
Divergent move conflict . 192
Cycle move conflict . 193
Conflict resolution order – directories before files . 194
Automatic resolution of directory conflicts . 195

Merge from and merge to . 196
Removing changes – subtractive merge . 197

What is a subtractive merge . 197
When should you use subtractive merge? . 198
How to undo a merge. 198
Re-merging a branch that was subtracted . 200

Cherry picking . 202
Cherry pick a changeset . 202
Branch cherry pick . 203
Interval merge . 204

Conflicts during checkin – working on a single branch . 205
Locking: avoiding merges for unmergeable files . 209

Merging binary files . 209
Lock to prevent concurrent changes . 210
Locks only work in single branch . 213

Plastic rebase vs. Git rebase . 214
Workspaces. 219

Full workspaces vs. partial workspaces . 219
What is a workspace . 219
Metadata of a workspace . 221
Update and switch operations. 222

Update . 223
Switch . 224
Update to a different repo. 225

One repo many workspaces . 226
Tuning the update operation in full workspaces . 226

Cloaked . 227
Readonly and writable . 227
Tune EOLs. 228

Finding changes. 228
Looking for changes . 228
Private files and ignore.conf . 229
Detecting moves and renames . 229
Hiding changes with hidden_changes.conf . 231

Controlled changes - checkouts . 231
Notifying added, deleted and moved . 232
Notifying changes . 234
When to use controlled changes . 234

Advanced change tracking. 236
Fast change detection with watchers. 236
Advanced move detection . 236

Switch branch with changes – why it is risky. 236
What if you really want to override changes?. 238

Full workspaces are always ready to merge . 238
Partial workspaces. 241

Configuring your partial workspace. 241
Partial workspaces aren’t in sync with a given changeset . 242
Partial workspaces can checkin without downloading new changes . 243
Fully checked and partially checked directories . 244
How to convert a partial workspace into a full workspace and vice versa. 245
Files that require merge during checkin . 245
Xlinks in partial workspaces. 247

How to learn more. 249
More about Plastic SCM . 249

Materials for learning more essential info . 249
Git interop . 250
References . 250

DevOps with Plastic . 250
DevOps driven by mergebots . 250
DevOps driven by the CI system . 251

Blog highlights . 251
How we work . 251

Great books to read . 252
Appendix A: History of Plastic SCM . 255

It all started with a dream… and a challenge . 255
Getting real. 255
A dream comes true . 255
Códice and Plastic . 256
Plastic 1.0, 2.0 and first international sales . 256
VC time . 257
Growing up – the road to 4.0 . 257
A mature solution . 258

Appendix B: Pattern files . 259
Filter pattern files . 259

Rule types . 259
Include / Exclude . 262
Pattern evaluation hierarchy . 262

Value matching pattern files . 266
Rule Types . 267
Pattern evaluation hierarchy . 268

Appendix C: Alternative branching strategies and solutions to frequent problems. 271
Branch per task with human integrator. 271

Cycle definition . 271
How it looks like in practice . 273
Pros & cons. 275
When to use it . 276

Mainline only for unmergeable files. 276
Release branches. 276
Maintenance branches . 277

A typical maintenance layout . 278
Simple proposal for maintenance branches. 279
When to merge maintenance branches back. 280
Problems with maintenance branches . 281
Where to apply bugfixes . 282
How we do it with Plastic SCM. 283
Conclusion . 284

Branching for product variations . 284
Typical challenges found in setups with multiple product branches . 287
Proposed solution . 287

No automated tests. 289
Slow builds and slow tests . 289
Big Bang integration . 293

Appendix D: 2 principles for project management. 297
Always have a fallback solution. 297
Maximize visibility . 298

PREFACE

About this guide
Most of you have probably experienced the process of writing a user guide. It is a terribly challenging
experience.

We struggled to try to figure out the best way to write our manuals for years. Sometimes you think no
matter what you write, nobody is going to read it. But, sometimes, you do get feedback from others and
you’re convinced even the smallest detail must be written down, because someone will find it or miss it.

Then there’s the writing style. When we started back in 2005, we created something closer to a reference
guide. It was painful to write, and I’m sure it was painful to read too. But, we tried with general
examples, with a professional and impersonal tone… that’s what we thought would work at the time.

Later, we found out from our own blogging experience that good examples and a personal writing tone
worked better. It seems we humans are much better at extracting general cases from particular ones
than vice versa. And, they are much easier to write too.

The thing is that, after almost one-and-a-half decades in the making, the original reference style still
persisted. So, we finally decided to go for a complete rewrite of our end-user manuals, applying all the
lessons we learned along the way.

I still love the old user manuals that came with computers in the 1980s. You know, they were not just
about how to use the thing, but about really becoming a master. My first programming book was a user
manual from my first Amstrad PCW 256. I miss these manuals. Now, you usually don’t even get one
when you receive a new laptop. I’m not sure if I’d really appreciate getting a copy of some
C/C#/Javascript/whatever programming manual anyway, but it is all about nostalgia.

Anyway, this guide is not just about Plastic SCM. It is about how to become a better software developer
mastering version control. It somehow tries to bring back some nostalgia from the old manuals, mixed
with the "don’t write a reference guide anymore" hard-learned lesson.

It is prescriptive and opinionated sometimes, which now I think is a good thing because we propose
things, then it is your choice to apply them. If we simply leave everything as an exercise to the reader, if
we stay independent, then there’s not much value for you to extract as a reader. You can agree or
disagree with us, but both will be valuable takeaways.

For years, we thought it would be too pretentious to tell teams how they should use our tool and
implement version control. But, as I said, we learned that you choose our product not only because of
the binaries you download; but also to save hours of expert-seeking efforts and benefit from our own
experience. We build a version control platform; we work with hundreds of teams around the world, we
might be mistaken, but you can definitely benefit from our mistakes and wise choices.

About this guide | 1

This guide is our best attempt to put together all we know about version control and how to implement
it, written in the most concise and personal way we know. We hope you enjoy it and find it helpful
because that’s the only reason why we wrote it.

Conventions used in this book

 This element indicates a note.

 This element indicates a tip.

 This element indicates an important text.

 This element indicates a caution or warning.

2 | Preface

WELCOME

Welcome to Plastic SCM!

If you’re reading this, chances are you’re interested in mastering version control and going beyond the
most common tools and practices.

This guide will help you understand Plastic SCM, the underlying philosophy, and best practices it is built
upon. It will also help you decide if it is the right tool for you or how to master it if you’ve already decided
to use it.

Welcome | 3

4 | Welcome

STARTING UP

Let’s map a few concepts
Before we start, I’d like to compare a few concepts from Plastic SCM to other version control systems, so
everything will be much easier for you to understand in the following sections.

Plastic SCM Git Perforce Comment

Checkin Commit Submit To Checkin is to submit changes to the repository.

Changeset Commit Changelist Each time you checkin, you create a new changeset.

(In this book, We’ll use the abbreviation cset for changeset and
csets for changesets.)

Update Checkout Sync Download content to the local working copy. This happens, for
instance, when you switch to a different branch.

Checkout --- Edit When you checkout a file in Plastic, you’re telling Plastic you are
going to modify the file. It is not mandatory and you can skip this
step.

But, if you are using locks (exclusive access to a file), then
checkouts are mandatory.

main master main A.k.a. trunk in Subversion. The main branch always exists in a
repository when you create it. In Plastic, you can safely rename it
if needed.

Repository Repository Depot The place where all versions, branches, merges, etc. are stored.

Workspace Working tree Workspace The directory where your project is downloaded to a local disk
and you use to work. In Git, the repo/working copy are tightly
joined (the repo is inside a .git directory in the working copy). In
Plastic, you can have as many workspaces as you want for the
same repo.

Now you might be wondering: Why don’t you version control designers simply use the same consistent
naming convention for everything? The explanation could be really long here, but… yes, it’s just to drive
you crazy ὠ�

A perfect workflow
It is a good idea to start with a vision of what is achievable. And that’s precisely what I’m going to do.
First, I will describe what we consider to be state of the art in development workflows, what we consider
to be the perfect workflow.

Let’s map a few concepts | 5

Branch Code Review Merge & test DeployTask

Key steps
Task

It all starts with a task in your issue tracker or project management system: Jira, Bugzilla, Mantis,
Ontime, or your own homemade solution. The key is that everything you do in code has an
associated task. It doesn’t matter whether it is a part of a new feature or a bugfix; create a task for it.
If you are not practicing this already, start now. Believe me, entering a task is nothing once you and
your team get used to it.

Task branch

Next, you create a branch for the task. Yes, one branch for each task.

Develop

You work on your task branch and make as many checkins as you need. In fact, we strongly
recommend checking in very, very often, explaining each step in the comments. This way, you’ll be
explaining each step to the reviewer, and it really pays off. Also, don’t forget to add tests for any new
feature or bugfix.

Code review

Once you mark your task as completed, it can be code reviewed by a fellow programmer. No excuses
here, every single task needs a code review.

Validation

There is an optional step we do internally: validation. A peer switches to the task branch and manually
tests it. They don’t look for bugs (automated tests take care of that) but look into the
solution/fix/new-feature from a customer perspective. The tester ensures the solution makes sense.
This phase probably doesn’t make sense for all teams, but we strongly recommend it when possible.

Automated testing and merge

Once the task is reviewed/validated, it will be automatically tested. (After being merged but before
the merge to be checked in. More on that later). Only if the test suite passes the merge will it be
confirmed. This means we avoid breaking the build at all costs.

Deploy

You can get a new release after every new task passes through this cycle or if you decide to group a
few. We are in the DevOps age, with continuous deployment as the new normal, so deploying every
task to production makes a lot of sense.

I always imagine the cycle like this:

6 | Starting up

CI /
mergebot

task

review

validation

merge

checkinbranch

tests

developers

feedback
loop

Build x+1
new base for
development

release
tests

label

upload

As you can see, this perfect workflow aligns perfectly with the DevOps spirit. It is all about shortening the
task cycle times (in Kanban style), putting new stuff in production as soon as possible, deploying new
software as a strongly rooted part of your daily routine, and not an event as it still is for many teams.

Our secret sauce for all these is the cycle I described above. That can be stated as follows: The recipe to
safely deliver to production continuously: short-lived task branches (16h or less) that are reviewed and
tested before being merged to main.

What is DevOps
DevOps is all about breaking silos and delivering quickly to production.

Leading organizations, such as Amazon and Facebook, deploy up to 100k times a day. (Thanks to
micro-services, of course)

It is all about super-fast release cycles keeping the business in mind:

• Check out growth-hacking or any modern-day marketing practice: it encourages continuous
experimentation, A/B testing, measuring, and making data-driven decisions.

• To iterate faster, respond faster and adapt quickly, organizations need DevOps.

Test automation, continuous integration, and delivery are just enablers to achieve the ultimate
business goal.

Our favorite book about DevOps is "The DevOPS Handbook: How to Create World-Class Agility,
Reliability, and Security in Technology Organizations" it’s really worth reading. Super easy to
understand, short, and straight to the point.

A perfect workflow | 7

Workflow dynamics
How does all the above translate to version control? The "One task - one branch" chapter is dedicated to
this, but let’s see a quick overview.

I’ll start after you create a task for a new work to be done, and you create a new branch for it:

main

task1213

BL101

time

Notice that we recommend a straightforward branch naming convention: a prefix (task in the example)
followed by the task number in the issue tracker. Thus, you keep full traceability of changes, and it is as
simple as it can be. Remember, Plastic branches can have a description too, so there is room to explain
the task. I like to copy the task headline from the issue tracker and put it there, although we have
integrations with most issue trackers that will simply do that automatically if you set it up.

Now, you check in the changes you make to implement your task. Your task will look as follows (if it is a
long task taking a few hours, you should have way more than a couple of checkins). Notice that, the
main branch has also evolved (I’m just doing this to make the scenario more realistic).

8 | Starting up

main

task1213

BL101

time

After more work, your task is completed in terms of development. You mark it as solved with an attribute
(status) set to the task. Alternatively, you can mark it as completed in your issue tracker. It all depends on
your particular toolset and how you will actually end up implementing the workflow.

main

task1213

BL101

status: solved

time

Now it’s the reviewer’s turn to look at your code and see if they can spot any bugs or something in your
coding style or particular design that should be changed.

As I described earlier, once the review is ok, a peers could do a validation too.

If everything looks good, the automatic part kicks in; your code merges and is submitted to the CI
system to build and test.

A perfect workflow | 9

main

task1213

BL101

status: testing

time

Two important things to note here:

• The dashed arrows mean that the new changeset is temporary. We prefer not to check in the merge
before the tests pass. This way, we avoid broken builds.

• We strongly encourage you to build and pass tests on the merged code. Otherwise, tests could pass
in isolation in task1213 but ignore the new changes on the main branch.

Then the CI will take its time to build and pass tests depending on how fast your tests are. The faster, the
better!

If tests pass, the merge will be checked in (confirmed), and your task branch will look something like this:

main

task1213

BL101

status: merged

time

Notice the status is now set to merged. Instead of an attribute set to the branch, you could track the
status in your issue tracker (or on both, as we do internally).

If the new release is ready to be deployed, the new changeset on main is labeled as such and the
software deployed to production (or published to our website as we do with Plastic SCM itself):

10 | Starting up

main

task1213

BL101

status: merged

BL102

time

How to implement
By now, you must have a bunch of questions:

1. What parts of what you describe are actually included in Plastic?

Easy. Plastic is a version control. So we help you with all the branching and merging. Branching and
merging (even the visualization you saw in the examples above) are part of the product. Plastic is not
a CI system, but it is a coordinator (thanks to mergebots, more on that later), so it can trigger the
builds, automate the merges, perform the labeling, and more.

2. What CI systems does Plastic integrate with?

Virtually all of them because Plastic provides an API. But out of the box, it integrates with Jenkins,
Bamboo, and TeamCity.

3. You mentioned you have a CI coordinator. Can’t I simply just go and plug my own CI?

Of course, you can plug in your own CI and try to implement the cycle above. We have done a lot of
times with customers.

4. Do I need a CI system and an issue tracker to implement task branches?

If you really want to take full advantage of the cycle above and complete automation, you should. But
you can always go manually: you can create task branches, work on them, and have someone in the
team (integrator/build-master) doing the merges. That’s fine, but not state of the art. We used to do
it this way [https://www.plasticscm.com/download/help/trunk] ourselves some time ago.

Where are you now?
You might be ahead of the game I described above. If that’s the case, we still hope you can fit Plastic into
your daily work.

If that’s not the case, if you think this is a good workflow to strive for, then the rest of the book will help
you figure out how to implement it with Plastic SCM.

A perfect workflow | 11

https://www.plasticscm.com/download/help/trunk
https://www.plasticscm.com/download/help/trunk

Are task branches mandatory in Plastic SCM?
Nope! Plastic is extremely flexible and you’re free to implement any pattern you want.

But, as I mentioned in the introduction, I’m going to be prescriptive and recommend what we truly
believe to work.

We strongly trust task branches because they blend very well with modern patterns like trunk based
development [https://www.plasticscm.com/download/help/trunkandtaskbranches], but we’ll cover other strategies
in the book.

For instance, many game teams prefer working on a single branch, always checking in the main branch
(especially artists), which is fine.

What is Plastic SCM
Plastic SCM is a full version control stack designed for branching and merging. It offers speed,
visualization, and flexibility.

Plastic is perfect for implementing "task branches," our favorite pattern that combines really well with
trunk-based development, DevOps, Agile, Kanban, and many other great practices.

When we say "full version control stack" we mean it is not just a bare-bones core. Plastic is the repository
management code (the server), the GUI tools for Linux, macOS, Windows, command line, diff tools,
merge tools, web interface, and cloud server. In short, all the tools you need to manage the versions of
your project.

Plastic is designed to handle thousands of branches, automate merges other systems can’t, provide the
best diff and merge tools, (we’re the only ones providers of semantic diff and merge). So you can work
centralized or distributed (Git-like, or SVN/P4 like), to deal with huge repos (4TB is not an issue) and be as
simple as possible.

Plastic is not built on top of Git. It is a full stack so it is compatible with Git but doesn’t share the
codebase. It is not a layer on top of Git like GitHub, GitLab, BitBucket, the Microsoft stack, and other
alternatives. It is not just a GUI either like GitKraken, Tower and all the other Git GUI options. Instead, we
build the entire stack. And, while this is definitely hard, it gives us the know-how and freedom to tune
the entire system to achieve things others simply can’t.

Finally, explaining Plastic SCM means introducing the team that built it: we are probably the smallest
team in the industry building a full version control stack. We are a compact team of developers with, on
average, +8 years of experience building Plastic. It means a low turnover, highly experienced group of
people. You can meet us here [https://www.plasticscm.com].

We don’t want to capture users to sell them issue trackers, cloud storage, or build a social network.
Plastic is our final goal. It is what makes us tick and breathe. And we put our souls into it to make it
better.

Why would someone consider Plastic?
You have other version control options, mainly Git and Perforce.

You can go for bare Git, choose one of the surrounding Git offerings from corporations like Microsoft
and Atlassian, or select Perforce. Of course, you can alternatively stick to SVN, CVS, TFS, Mercurial, or

12 | Starting up

https://www.plasticscm.com/download/help/trunkandtaskbranches
https://www.plasticscm.com/download/help/trunkandtaskbranches
https://www.plasticscm.com

ClearCase… but we usually only find users moving away from these systems, not into them anymore.

Why would you choose Plastic instead of the empire of Git or the well-established Perforce (especially
since they are in the gaming industry)?

Plastic is a unique software that high-performance teams who want to get the best out of version control
use. It’s for teams that need to do things differently than their competitors who have already gone to
one of the mainstream alternatives.

What does this mean exactly?

• Do you want to work distributed like Git but also have teams of team members working centralized?
Git can’t solve your issue because it can’t do real centralized, and Perforce is not strong in a
distributed environment.

• Does your team need to handle huge files and projects? This is very common in the gaming industry.
Git can’t do big files and projects. Perforce is a good option but it lacks the super-strong branching
and merging of Plastic (again, not good at distributed environments).

• Do you regularly face complex merges? Plastic can handle merge cases out of the scope of Git and
Perforce. Besides, we develop the best diff and merge tools you can find, including the ability to even
merge code moved across files (semantic diff and merge, our unique technology).

• Do you need fast Cloud repos located as close to your location as possible? Plastic Cloud lets you
choose from a list of more than 12 data centers.

• Finely-grained security? Plastic is based on access control lists. Git can’t do this by design. Perforce is
good at this, but doesn’t reach the access control list level.

• Performance: Plastic is super-fast, even with repos that break Git or slow down Perforce. Again, a
design choice.

• Excellent support: Our support is part of the product. This is how we see it. Plastic is great, but what
really makes it beat our competitors is how we care about users. We answer more than 80% of
questions in less than one hour. 95% in under eight hours. And you can talk to real team members,
not just a call center, but real product experts who will help you figure out how to work better will
help you solve issues, or will simply listen to your suggestions.

• Responsive release cycles: We release faster than anyone else (several releases a week) to respond to
our users' needs.

The list goes on and on, but you get the idea.

Who is using Plastic?
If Git is eating up the world of software development, who is selecting a niche player as Plastic?

Plastic is used by a wide range of teams: Companies with 3000+ developers, small shops with just two
programmers starting up the next big game, and the entire range in between. Teams with 20-50 are
very common.

What is version control
Version control is the operating system of software development.

We see version control as the cornerstone the rest of the software development sits upon. It takes care
of:

What is version control | 13

• The project structure and contents that editors, IDEs and compilers will use to build.

• CI systems that grabs changes, trigger builds and deploy.

• Issue trackers and project management tools.

• Code review systems that access the changes to review and collaborate to deliver the software
quickly (DevOps).

version control

compiler / build system issue tracker

CIIDE

Code Review

DevOps

Version control is much more than a container. It is a collaboration tool. It is what team members will
use to deliver each change. Properly used, it can shape the way teams work, enabling faster reviews,
careful validation and frequent releases.

Version control is also a historian, the guardian of the library of your project. It contains the entire
evolution of the project and can track handy information of why changes happened. This is the key for
improvement: those who don’t know their history are condemned to repeat it.

We believe there is an extraordinary value in the project history, and we are only seeing the tip of the
iceberg of what’s to come in terms of extracting value from it.

Plastic SCM Editions
Of course, the different editions we offer in Plastic SCM are crystal clear in our minds ὠ�. But sometimes,
explanations are needed. You can find all the detailed info about different editions here
[https://www.plasticscm.com/pricing].

Here is a quick recap:

14 | Starting up

https://www.plasticscm.com/pricing

Type Name Who it is for

Paid and Free Cloud Edition Teams who don’t want to host their own Plastic SCM server.

They can have local repos and push/pull to the Cloud.

Or they can directly checkin/update to the Cloud.

You get the storage, the managed cloud server, and all the Plastic SCM
software with the subscription.

Cloud Edition is dynamically licensed per user. This means if one month
nobody in your team uses Plastic, you don’t pay for it, just for the repos
stored in the cloud, if any.

Cloud Edition is FREE up to a given amount of monthly users and GB of
storage.

Paid Enterprise Edition Teams who host their own on-premises server.

The subscription comes with all the software, server, tools, and several
optimizations for high performance, integration with LDAP, proxy servers
(the kind of things big teams and corporations need to operate).

Plastic SCM is licensed per user, not server or machine. This means a developer can use a single license
on macOS, Linux, and Windows and pays only one license. It also means you can install as many servers
as you need without extra cost.

How to install Plastic
Installing Plastic SCM is straightforward: Navigate go to our downloads page [https://www.plasticscm.com/
download] and pick the right installer for your operating system. After that, everything is super easy. If
you are on Linux, complete the 2 instructions for your specific distro flavor.

If you are joining an existing project
If you are just joining an existing project, you’ll probably just need the client.

• Ensure you understand whether you will work centralized (direct checkin) or distributed (local
checkin to a local repo, then push/pull).

• Check the Edition your team is using and ensure you install the right one. If they are using Cloud
Edition, you only need that. If they are in Enterprise, ensure you grab the correct binary. It is not
much drama to change later, but if you are reading this, you already have the background to choose
correctly ὤ�

• If you are using Enterprise and you will work distributed (push/pull), you’ll need to install a local
server.

If you are tasked to evaluate Plastic
Congrats! You are the champion of version control of your team now. Well, we’ll help you move forward.
Here are a few hints:

• Check the edition that best suits your needs.

• You’ll need to install a server. The default installation is fine for production, it comes with our Jet

How to install Plastic | 15

https://www.plasticscm.com/download
https://www.plasticscm.com/download/help/jetstory

storage [https://www.plasticscm.com/download/help/jetstory] which is the fastest. If it is just you evaluating,
you can install everything on your laptop, unless you want to run actual performance tests
simulating real loads. But, functionality-wise, your laptop will be fine.

• You’ll need a client, too; GUIs and CLIs come in the same package. Easy!

Detailed installation instructions
Follow the installation and configuration guide [https://www.plasticscm.com/download/help/plasticinstallation] to
get detailed instructions of how to install Plastic on different platforms.

How to get help
It is important to highlight that you can contact us if you have any questions. Navigate to our page
support [https://www.plasticscm.com/support] and select the best channel.

• It can be an email to support (you can do that during evaluation).

• Check our forum [http://www.plasticscm.net].

• Create a ticket in our support system if you prefer.

• You can also reach us on Twitter @plasticscm.

You should know that we are super responsive! You’ll talk to the actual team (you can meet us on our
team page [https://www.plasticscm.com/company/team]) and we care a lot about having an extraordinary level
of response. Our stats say we answer 80% of the questions in under one hour and more than 95% in
under eight hours.

Communication is key for a product like Plastic SCM. We aren’t a huge team hiding our experts behind
several layers of first responders. You’ll have the chance to interact with the real experts. And it means
not only answering simple questions, but also recommending to teams the best way of working based
on their particularities.

By the way, we are always open to suggestions too, ὠ�

Command line vs. GUI
In many version control books, there are many command-line examples. Look at any book on Git, and
you’ll find plenty of them.

Plastic is very visual because we spend lots of effort in the core and in the GUIs. That’s why traditionally
most of our docs and blog posts were very GUI-centric.

In this guide, we will try to use the command line whenever it helps to better explain the underlying
concepts, and we’ll keep very interface agnostic and concept-focused whenever possible. But, since GUIs
are key in Plastic, expect some screenshots, too ὤ�

16 | Starting up

https://www.plasticscm.com/download/help/jetstory
https://www.plasticscm.com/download/help/plasticinstallation
https://www.plasticscm.com/support
https://www.plasticscm.com/support
http://www.plasticscm.net
https://www.plasticscm.com/company/team

A PLASTIC SCM PRIMER

Let’s get more familiar with Plastic SCM before covering the recommended key practices about
navigating branching, merging, pushing, and pulling.

This chapter aims to get you started with Plastic and learn how to run the most common operations that
will help you during the rest of the book.

Get started
I’m going to assume you’ve already installed Plastic SCM on your computer. If you need help installing, I
recommend you follow our version control installation guide [https://www.plasticscm.com/download/help/
plasticinstallation].

The first thing you need to do is to select a default server and enter the correct credentials to work on it.

If you use the command line, you can run clconfigureclient [https://www.plasticscm.com/download/help/
clconfigureclient].

If you use the GUI, the first thing you will see is a screen like this:

Welcome to Plastic SCM ×

OK Cancel

Use SSL

Enter the name/IP and port of your server (e.g: myserver.mynetwork.net:8087)

localhost:8087

Configure your credentials

pablo *********** Check

Credentials checked OK

If you have to enter the server, decide if you want to connect through SSL and then enter your

Get started | 17

https://www.plasticscm.com/download/help/plasticinstallation
https://www.plasticscm.com/download/help/clconfigureclient

credentials.

After that, the GUI guides you through creating your first workspace connected to one of the repos on
the server you selected.



About the GUI

As you saw in the figure above, we’ll be using mockups to represent the GUI elements instead of
screenshots of the actual Linux, macOS or Windows GUIs. I prefer to do this for two reasons: first, to
abstract this guide from actual GUI changes, and avoid certain users feeling excluded. I mean, if I
take screenshots in Windows, then Linux and macOS users will feel like second-class citizens. But on
the other hand, if I add macOS screenshots, Windows and Linux users will be uncomfortable. So, I
finally decided to show mockups that will help you find your way on your platform of choice.

Notice that I entered localhost:8087 as the server. Let me explain a little bit about this:

• The server will typically be "local", for Cloud Edition users, without a port number. This is because
every Cloud Edition comes with a built-in local server and a simplified way to access it.

• If you are evaluating Enterprise Edition and you installed a server locally in your machine,
localhost:8087 will default.

• If you are connected to a remote server in your organization, your server will be something like
skull.codicefactory.com:9095, which is the one we use.

• If you connect directly to a Plastic Cloud server, it will be something like robotmaker@cloud, where
robotmaker will be the name of your cloud organization instead.

Authentication modes.
Plastic supports several authentication modes, primarily LDAP, Active Directory, and
user/password. Then there are other modes (Name) used for evaluation purposes. Learn more
about auth modes [https://www.plasticscm.com/download/help/authmodes].

3 key GUI elements
Before moving forward, I’d like to highlight the three most essential elements you will use in the GUIs.

• Workspace Explorer (previously known as "items view").

• Pending Changes, a.k.a. Checkin Changes.

• Branch Explorer.

Workspace Explorer
This view is like a Windows Explorer or macOS Finder with version control information columns.

18 | A Plastic SCM primer

https://www.plasticscm.com/download/help/authmodes

Plastic SCM ×

Workspace Explorer

Pending Changes

Branch Explorer

Path Status Size Type Author Date

/home/pablo/wkspaces/wktest Controlled Directory pablo 2018/12/28-

art Controlled Directory ruben 2018/11/29-

car Private Directory pablo 2018/12/24+

code Controlled Size Directory manu 2018/12/10-

botlib Controlled Size Directory vio 2018/12/11-

foo.c Controlled 21 KB Text miryam 2018/12/13

bar.c Controlled 12 KB Text pablo 2018/12/31

You can see the files you have loaded into your workspace and the date when they were written to disk,
and also the changeset and branch where they were created (although I’m not including these last two
in the figure above).

It is the equivalent of running a cm ls command.

cm ls
 0 12/28/2018 14:49 dir br:/main .
 0 11/29/2018 14:49 dir br:/main art
 0 12/10/2018 18:23 dir br:/main code

The most exciting things about the Workspace Explorer are:

• It comes with a finder that lets you locate files quickly by name patterns. CTRL-F on Windows or
Command-F on macOS.

• There is a context menu on every file and directory to trigger specific actions:

Plastic SCM ×

Workspace Explorer

Pending Changes

Branch Explorer

Path Status Size Type Author Date

/home/pablo/wkspaces/wktest Controlled Directory pablo 2018/12/28-

art Controlled Directory ruben 2018/11/29-

car Private Directory pablo 2018/12/24+

code Controlled Size Directory manu 2018/12/10-

botlib Controlled Size Directory vio 2018/12/11-

foo.c Controlled 21 KB Text miryam 2018/12/13

bar.c Controlled 12 KB Text pablo 2018/12/31

Add to source control

Open

Diff

Checkout

Checkin

Undo checkout

Add to cloaked

Add to hidden changes

Rename

Cut

Paste

Annotate

View history

Actions are enabled depending on the context (for example, you can’t check the history of a private file).

3 key GUI elements | 19

Pending Changes
This view is so useful! You can perform most of your daily operations from here. In fact, I strongly
recommend using this view and not the Workspace Explorer to add files and check in changes.

The layout of Pending Changes in all our GUIs looks like this:

Plastic SCM ×

Workspace Explorer

Pending Changes

Branch Explorer

Path Status Size Type Date modified

Refresh Checkin Undo Options filter

type checkin comments here...

Added and private-

src/graphics/Icon.cs Added 2 KB Text 7 min ago

src/graphics/Bmp.cs Private 1 KB Text 1 min ago

Changed-

src/core/Integration.cs Checkout 3 KB Text 3 min ago

src/graphics/Render.cs Changed 1 KB Text 5 min ago

Deleted-

FS/FileSystem.h Removed 3 KB Text 10 min ago

src/graphics/Render.cs Removed Locally 1 KB Text 5 min ago

Moved-

docu to documentation Moved Directory 23 min ago

inc to include Moved Locally Directory 15 min ago

D

C

M

A

• There are important buttons at the top to refresh and find changes (although you can also configure
all GUIs to do auto-refresh), checkin and undo changes.

• Then, there is a section to enter checkin comments. This is the single most important thing to care
about when you are in this view: ensure the comment is relevant. More about checkin comments
later in the chapter about task branches.

• And finally, the list of changes. As you can see, Pending Changes split the changes in "changed",
"deleted", "moved," and "added". Much more about these options in the "Finding changes" section in
the "Workspaces" chapter.

The other key thing about Pending Changes is the ability to display the diffs of a selected file:

20 | A Plastic SCM primer

Workspace Explorer

Pending Changes

Branch Explorer

Path Status Size Type Date modified

Refresh Checkin Undo Options filter

type checkin comments here...

Changed-

src/core/Integration.cs Checkout 3 KB Text 3 min ago

src/graphics/Render.cs Changed 1 KB Text 5 min ago

Deleted-

FS/FileSystem.h Removed 3 KB Text 10 min ago

D

C

Plastic SCM ×

Plastic comes with its own built-in diff tool. And as you can see, it can do amazing things like tracking
methods that were moved. We are very proud of our SemanticMerge technology.

Most of the Plastic SCM actions you will do while developing are done from Pending Changes. You
simply switch to Plastic, see the changes, check in, and get back to work!

Branch Explorer
The Branch Explorer diagram is our crown jewel. We are super proud of it and the way it can render the
evolution of the repos. The Branch Explorer (a.k.a. BrEx) view has the following layout:

3 key GUI elements | 21

Plastic SCM ×

Workspace Explorer

Pending Changes

Branch Explorer

Refresh Only relevant Options search2018/11/15Since

main
BL101 BL102

task1213

task1209

task1221

Every circle in the graphic is a changeset. The changesets are inside containers that represent the
branches. The diagram evolves from left to right, where changesets on the right are newer than those
on the left. The actual Branch Explorer in the GUIs draws columns with dates to clarify this.

The green arrows are merges and the blue ones connect changesets with a "is the parent of"
relationship.

The green donuts surrounding changesets are labels (equivalent to Git tags).

The Branch Explorer lets you filter the date from where you want to render the repo, and it has zoom, a
search box, and also an action button to show "only relevant" changesets. It also shows a "house icon" in
the changeset your workspace is currently on (this is true for regular Plastic, not Gluon, as you will see in
the "Partial Workspaces" section).

By the way, if you click "Only relevant", the Branch Explorer will compact as the following figure shows,
since the "relevant changesets" are:

• Beginning of a branch.

• End of a branch.

• Labeled changeset.

• Source of a merge.

• Destination of a merge.

This way, it is very easy to make large diagrams more compact by hiding "non-relevant" changesets.

22 | A Plastic SCM primer

Plastic SCM ×

Workspace Explorer

Pending Changes

Branch Explorer

Refresh Only relevant Options search2018/11/15Since

main
BL101 BL102

task1213

task1209

task1221

From the Branch Explorer context menus, you can perform several key actions. You can select every
branch, changeset, label and right-click on it to discover their actions.

Typical actions you can perform are:

• Switch your workspace to a different branch, changeset, or label.

• Diff branches, changesets, and labels.

• Push and pull branches.

• Merge branches and changesets.

• Actions to set attributes to branches.

There are other views but…
In my opinion, you can perform all the daily actions just using Pending Changes and the Branch
Explorer, and maybe a little bit of the Workspace Explorer. If I had to remove everything except what
was absolutely essential, Plastic would run just with these three.

There are other views like the Branches View, which lists branches more traditionally (a list), Changesets
View, Attributes, Labels… but you can use the Branch Explorer instead for a more visual view.

Listing repos on different servers
In the command line, run:

cm repository list

In my case, this is the output of the command:

Listing repos on different servers | 23

cm repository list
quake@192.168.221.1:6060
quake_replicated@192.168.221.1:6060
quake_from_git@192.168.221.1:6060
ConsoleToast@192.168.221.1:6060
PlasticNotifier@192.168.221.1:6060
asyncexample@192.168.221.1:6060
geolocatedcheckin@192.168.221.1:6060
p2pcopy@192.168.221.1:6060
udt@192.168.221.1:6060
wifidirect@192.168.221.1:6060
PeerFinder@192.168.221.1:6060

The repository [list | ls] command shows the list of the repos on your default server (the one you
connected to initially).

But, it also works if you list the reps of another server:

>cm repository list skull:9095
Enter credentials to connect to server [skull:9095]
User: pablo
Password: *******
codice@skull:9095
pnunit@skull:9095
nervathirdparty@skull:9095
marketing@skull:9095
tts@skull:9095

I used the command to connect to skull:9095 (our main internal server at the time of this writing, a
Linux machine) and Plastic asked me for credentials. The output I pasted is greatly simplified since we
have a list of over 40 repos on that server.

You can also use repository list to list your cloud repos. In my case:

>cm repository list codice@cloud
codice@codice@cloud
nervathirdparty@codice@cloud
pnunit@codice@cloud
marketing@codice@cloud
plasticscm.com@codice@cloud
devops@codice@cloud
installers@codice@cloud

This is again a simplified list. This time the command didn’t request credentials since I have a profile for
the codice@cloud server.

You get the point; every server has repos, and you can list them if you have the permissions.

For you most likely, a cm repository list will show something like:

cm repository list
default@localhost:8087

By default, every Plastic installation creates a repo named default so you can start doing tests with it

24 | A Plastic SCM primer

instead of starting from a repo-less situation.

From the GUIs, there are "repository views" where you can list the available repos:

Plastic SCM ×
Refresh filterlocalhost:8087Server

Name Server

default localhost:8087

quake localhost:8087

doom localhost:8087

New repo ...

There is always a way to enter a different server that you want to explore and also a button to create
new repos if needed.

Create a repo
Creating a new repository is very simple:

cm repository create myrepo@localhost:8087

Where myrepo@localhost:8087 is a "repo spec" as we call it.

Using the GUI is straightforward, so I won’t show a screenshot; it is just a dialog where you can type a
name for the repo ὤ�.

Of course, you can only create repositories if you have the mkrep permission granted on the server.

Create a workspace
A workspace is a directory on a disk that you will use to connect to a repository. Let’s start with a clean
workspace.

If you run:

cm workspace create demowk c:\users\pablo\wkspaces\demowk

Plastic will create a new workspace named demowk inside the path you specified.

It is very typical to do this instead:

cd wkspaces
mkdir demowk
cd demowk
cm workspace create demowk .

Create a repo | 25

Notice I didn’t specify which repository to use for the workspace. By default, the first repo in the default
server is used, so in your case it will most likely be your default repo. There are two alternatives to
configure the repo:

cm workspace create demowk . --repository=quake@localhost:9097

Or, simply create it in the default location and then switch to a different repo:

cm workspace create demowk .
cm switch main@quake

Workspaces have a name and a path for easier identification. And, you can list your existing workspaces
with cm workspace list.

>cm workspace list
four@MODOK c:\Users\pablo\wkspaces\dev\four
five@MODOK c:\Users\pablo\wkspaces\dev\five
tts@MODOK c:\Users\pablo\wkspaces\dev\tts
plasticscm-com@MODOK c:\Users\pablo\wkspaces\dev\plasticscm-com
doc-cloud@MODOK c:\Users\pablo\wkspaces\dev\doc-cloud
plasticdocu_cloud@MODOK c:\Users\pablo\wkspaces\dev\plasticdocu_cloud
mkt_cloud@MODOK c:\Users\pablo\wkspaces\mkt-sales\mkt_cloud
udtholepunch@MODOK c:\Users\pablo\wkspaces\experiments\udtholepunch

The previous figure is a subset of my local workspaces at my modok laptop ὤ�.

From the GUI, there’s always a view to list and create workspaces:

Plastic SCM - workspaces ×
Refresh filter

Name Repository

default default@localhost:8087

quake quake@games@cloud

doom doom@skull:9095

Create new workspace ...

Path

/home/pablo/wkspaces/default

/home/pablo/wkspaces/quake

/home/pablo/wkspaces/doom

As you see, there can be many workspaces on your machine, and they can be pointing to different repos
both locally and on distant servers. Plastic is very flexible in that sense as you will see in "Centralized &
Distributed."

Creating a workspace from the GUI is straightforward, as the following figure shows:

26 | A Plastic SCM primer

Create new workspace ×

OK Cancel

Repository

robotcore (localhost:9097)

Workspace name

robotcorewk

Path on disk

/home/pablo/wkspaces/demos/robotcorewk

New

Browse ...

Suppose you create a workspace to work with an existing repo. Just after creating the workspace, your
Branch Explorer places the home icon in changeset zero. Initially, workspaces are empty until you run a
cm update (or GUI equivalent) to download the contents. That’s why initially, they point to changeset zero.

Adding files
Let’s assume you just created your workspace demowk pointing to the empty default repo on your server.
Now, you can add a few files to the workspace:

echo foo > foo.c
echo bar > bar.c

Then, check the status of your workspace with cm status as follows:

>cm status
/main@default@localhost:8087 (cs:0 - head)

Added
 Status Size Last Modified Path

 Private 3 bytes 1 minutes ago bar.c
 Private 3 bytes 1 minutes ago foo.c

The GUI equivalent will be:

Adding files | 27

Plastic SCM ×

Workspace Explorer

Pending Changes

Branch Explorer

Path Status Size Type Date modified

Refresh Checkin Undo Options filter

Initial checkin

Added and private-

foo.c Private 3 bytes Text 1 min ago

bar.c Private 3 bytes Text 1 min ago

A

You can easily check in the files from the GUI by selecting them and clicking checkin.

From the command line, you can also do this:

cm add foo.c

Which will display the following status:

>cm status
/main@default@localhost:8087 (cs:0 - head)

Added
 Status Size Last Modified Path

 Private 3 bytes 3 minutes ago bar.c
 Added 3 bytes 3 minutes ago foo.c

Note how foo.c is now marked as "added" instead of simply "private" because you already told Plastic to
track it, although it wasn’t yet checked in.

If you run cm status with the --added flag:

>cm status --added
/main@default@localhost:8087 (cs:0 - head)

Added
 Status Size Last Modified Path

 Added 3 bytes 5 minutes ago foo.c

foo.c is still there while bar.c is not displayed.

Ignoring private files with ignore.conf
There will be many private files in the workspace that you won’t need to check in (temporary files,
intermediate build files (the .obj), etc). Instead of seeing them repeatedly in the GUI or cm status, you
can hide them by adding them to ignore.conf. Learn more about ignore.conf in "Private files and
ignore.conf."

28 | A Plastic SCM primer

Initial checkin
If you run cm ci from the command line now, only foo.c will be checked in unless you use the --private
modifier or run cm add for bar.c first. Let’s suppose we simply checkin foo.c:

>cm ci -c "Added foo.c"
The selected items are about to be checked in. Please wait ...
| Checkin finished 33 bytes/33 bytes [##################################] 100 %
Modified c:\Users\pablo\wkspaces\demowk
Added c:\Users\pablo\wkspaces\demowk\foo.c
Created changeset cs:1@br:/main@default@localhost:8087 (mount:'/')

Notice how I added a comment for the checkin with the -c modifier. This is the comment that you will
see in the Branch Explorer (and changeset list) associated with the changeset 1 you just created.

Checkin changes
Let’s now make some changes to our recently added foo.c. Then run cm status:

>cm status
/main@default@localhost:8087 (cs:1 - head)

Changed
 Status Size Last Modified Path

 Changed 1024 bytes 1 minutes ago foo.c

Added
 Status Size Last Modified Path

 Private 1024 bytes 5 minutes ago bar.c

As you can see, foo.c is detected as changed, and the old bar.c is still detected as ready to be added
(private).

From the GUI, the situation is as follows:

Plastic SCM ×

Workspace Explorer

Pending Changes

Branch Explorer

Path Status Size Type Date modified

Refresh Checkin Undo Options filter

Change to foo.c

Added and private-

bar.c Private 1 KB Text 5 min ago

Changed-

foo.c Changed 1 KB Text 1 min ago

C

A

And, you’ll be able to easily select files, diff them, and check in.

Checkin changes | 29

Undoing changes
Suppose you want to undo the change done to foo.c.

From the GUI, it will be as simple as selecting foo.c and clicking "Undo."

Important: Only the checked elements are undone.

From the command line:

>cm undo foo.c
c:\Users\pablo\wkspaces\demowk\foo.c unchecked out correctly

>cm status
/main@default@localhost:8087 (cs:1 - head)

Added
 Status Size Last Modified Path

 Private 1024 bytes 6 minutes ago bar.c

Create a branch
Now, you already know how to add files to the repo and check in, so the next thing is to create a branch:

cm branch main/task2001

Creates a new branch child of the main branch, and at this point, it will be a child of changeset 1.

There is a --changeset modifier to specify the starting point of your new branch.

Now your Branch Explorer will be as follows:

main

task2001

Your workspace is still on the main branch because you haven’t switched to the new branch.

So let’s switch to the new branch this way:

30 | A Plastic SCM primer

> cm switch main/task2001
Performing switch operation...
Searching for changed items in the workspace...
Setting the new selector...
Plastic is updating your workspace. Wait a moment, please...
The workspace c:\Users\pablo\wkspaces\demowk is up-to-date (cset:1@default@localhost:8087)

And now the Branch Explorer looks like:

main

task2001

The home icon located in the new main/task2001 branch that is still empty.

Let’s modify foo.c in the branch by making a change:

>echo changechangechange > foo.c

>cm status
/main/task2001@default@localhost:8087 (cs:1 - head)

Changed
 Status Size Last Modified Path

 Changed 21 bytes 8 seconds ago foo.c

Added
 Status Size Last Modified Path

 Private 1024 bytes 6 minutes ago bar.c

And then a checkin:

>cm ci foo.c -c "change to foo.c" --all
The selected items are about to be checked in. Please wait ...
| Checkin finished 21 bytes/21 bytes [##################################] 100 %
Modified c:\Users\pablo\wkspaces\demowk\foo.c
Created changeset cs:2@br:/main/task2001@default@localhost:8087 (mount:'/')

The Branch Explorer will reflect the new changeset:

Create a branch | 31

main

task2001

From the GUI, it is straightforward to create new branches and switch to them:

Plastic SCM ×

Workspace Explorer

Pending Changes

Branch Explorer

Refresh Only relevant Options search2018/11/15Since

main

Diff changeset

Create branch from this changeset ...

Label this changeset ...

Switch workspace to this changeset...

Create child branch ...

Switch workspace to this branch

Changeset context menu Branch context menu

The Branch Explorer provides context menus to create new branches from changesets and branches
and switch to them. (I’m highlighting the interesting options only, although the context menus have
many other interesting options to merge, diff, etc.).

The dialog to create branches in the GUIs (Linux, macOS, and Windows) looks like this:

32 | A Plastic SCM primer

New branch ×
Create a new child branch from

Manual From task

Changeset 1 on branch /main

Branch name

task2001

Comments

A branch to learn the basics of branching in Plastic ;-)

OK CancelSwitch workspace to this branch

Here you can type the branch name and an optional comment. Branches can have comments in Plastic,
which is very useful because these comments can give extra info about the branch and be rendered in
the Branch Explorer.

As you see, there is a checkbox to switch the workspace to the branch immediately after creation.

If you look carefully, you’ll find two main options to create branches: manual and from the task. The
image above shows the manual option. Let’s see what the "from task" is all about.

Create a branch | 33

New branch ×
Create a new child branch from

Manual From task

Changeset 1 on branch /main

Pending tasks

OK Cancel

1997 Add a controller for /doc http request pablo

2001 Add a comment to foo.c pablo

2010 Fix Jupiter pablo

2061 Go to Halley pablo

3001 Find someone beyond Pluto pablo
Display pending tasks from all users

Switch workspace to this branch

Branch name

task2001

ID Title Assignee

Mark as open in issue tracker

Comments

Add a comment to foo.c

You can connect Plastic to a variety of issue trackers, and one of the advantages is that you can list your
assigned tasks and create a branch directly from them with a single click. Learn more about how to
integrate with issue trackers by reading the Issue Trackers Guide [https://www.plasticscm.com/download/help/
taskandissuetrackers].

Diffing changesets and branches
The next key tool to master in Plastic is the diff. You’ll probably spend more time diffing and reviewing
changes than actually making checkins.

Diffing from the command line
You would use the cm diff command to diff your first changeset:

>cm diff cs:1
A "foo.c"

In the above figure, in changeset 1, foo.c is added.

Now, if you diff changeset 2:

34 | A Plastic SCM primer

https://www.plasticscm.com/download/help/taskandissuetrackers

>cm diff cs:2
C "foo.c"

The command shows that foo.c is modified on that changeset.

The cm diff command is responsible for diffing both changesets/branches and actual files.

Since the changes made were pretty basic so far, the diffs will be very simple. So let me show you a diff
from a branch I have on one of my local repos:

>cm diff br:main/scm23606
C "art\me\me.jpg"
C "art\ironman\IronMan.jpg"
C "code\plasticdrive\FileSystem.cs"
M "code\cgame\FileSystem.cs" "code\plasticdrive\FileSystem.cs"

As you can see, the diff is more complex this time, and it shows how I changed three files and moved
one of them in the branch main/scm23606.

So far, we only diffed changesets and branches, but it is possible to diff files too. So, I’m going to print
the revision ids of the files changed in scm23606 to diff the contents of the files:

>cm diff br:main/scm23606 --format="\{status} \{path} \{baserevid} \{revid}"
C "art\me\me.jpg" 28247 28257
C "art\ironman\IronMan.jpg" 27600 28300
C "code\plasticdrive\FileSystem.cs" 28216 28292
M "code\plasticdrive\FileSystem.cs" -1 28292

Then, I can diff the change made in FileSystem.cs as follows:

>cm diff revid:28216 revid:28292

Instead of a text diff printed on your console, cm diff launches the diff tool configured for text files.
Plastic comes with a built-in diff and merge tool we call Xdiff/Xmerge, and then a GUI like the following
displays:

Diffing changesets and branches | 35

We think GUIs are better tools to show diffs than the typical unified diff displayed by many tools, and
that’s why we launch a GUI even when the diff is requested from the command line.

If you really want to see a unified diff printed on the console (because you need to run the diff from a
terminal without GUI support, for instance), check our Unix diff from console documentation
[https://www.plasticscm.com/download/help/unixdifffromconsole].

Explore the cm diff help to find all the available options. For example, you can diff branches, individual
files, changesets, labels (equivalent to diffing the changeset), or any pair of changesets that you want to
compare changes.

>cm diff help

Diffing from the GUIs
Well, it is no secret that we put much more attention into GUIs than the command line when it comes to
diffing. This is because we think that 99% of the time, developers will diff using a Plastic GUI instead of
the command line.

Diffing changesets and branches is very simple from the Branch Explorer; look at the following figure,
where you’ll see how there are diff options in the context menus of branches and changesets (and
labels).

36 | A Plastic SCM primer

https://www.plasticscm.com/download/help/unixdifffromconsole

Plastic SCM ×

Workspace Explorer

Pending Changes

Branch Explorer

Refresh Only relevant Options search2018/11/15Since

main
BL101 BL102

task1213

task1209

task1221

Diff changeset

Create branch from this changeset ...

Label this changeset ...

Switch workspace to this changeset...

Changeset context menu

Branch context menu

Merge from this branch...

Advanced merge

Create child branch ...

Switch workspace to this branch

Diff branch

Diffing an entire branch is simple. Right-click on it to select it (you’ll see that it changes color) and then
select the "diff branch" option.

As the following figure shows, diffing a branch is the equivalent of diffing its head changeset and its
parent changeset.

Diffing changesets and branches | 37

Plastic SCM ×

Workspace Explorer

Pending Changes

Branch Explorer

Refresh Only relevant Options search2018/11/15Since

12 20

main

14 16

13

BL101

19

BL102

task1213

15 17 18

task1209

21

task1221

23

The figure shows how diffing branch task1209 is equivalent to diffing changesets 13 and 23.

You can see the selected changesets are colored in violet; when you multi-select changesets, they are
colored differently to highlight the fact that many csets are selected. And, you can right-click and run
"diff selected."

The diffs of changesets and branches in the GUI are very powerful GUIs like the following mockup
shows:

38 | A Plastic SCM primer

Path Status Size Type Date modified

filter

Modified some integration code and the render

Changed-

src/core/Integration.cs Checkout 3 KB Text 3 min ago

src/graphics/Render.cs Changed 1 KB Text 5 min ago

Deleted-

FS/FileSystem.h Removed 3 KB Text 10 min ago

D

C

Plastic SCM – diff changeset xxx ×

1/3<< < > >>

The changeset/branch diff window first summarizes the changes on a tree with changed, deleted,
added, and moved, and then shows the actual side-by-side diff of the selected file.

One of the great advantages of the built-in diff in Plastic is that it can to do semantic diffs. This means
that the diff can track moving code fragments for certain languages like C#, C++, C, and Java (and then
several community-contributed parsers). For example, in the figure above, you can see how the
CreateDirectory method was identified as moved to a different location.

Learn more about what "semantic version control" [https://www.plasticscm.com/features/semantic-version-
control] can do.

Merge a branch
Let’s rewind to where we left our straightforward example where we created branch task2001 and made
a checkin on it. What if we now want to merge it back to the main branch?

Merging is effortless; you switch your workspace to the destination branch and merge from the source
branch or changeset. This is the most typical merge. There is another option, "merge to," which doesn’t
require a workspace to run it, but we’ll start with the most common one.

Merge a branch | 39

https://www.plasticscm.com/features/semantic-version-control

Merging from the GUI
This is what our branch explorer looks like at this point with the main branch and task2001. If you
remember, the workspace was in task2001, so the first thing we’ll do is switch to the main branch, by
selecting the branch, right-clicking on it, and running the "Switch workspace to this branch" action.

Plastic SCM ×

Workspace Explorer

Pending Changes

Branch Explorer

Refresh Only relevant Options search2018/11/15Since

main

task2001

Merge from this branch...

Advanced merge

Create child branch ...

Switch workspace to this branch

Diff branch

Once the switch is complete, the Branch Explorer will look as follows, and we’ll right-click on task2001 to
run a "merge from this branch":

Plastic SCM ×

Workspace Explorer

Pending Changes

Branch Explorer

Refresh Only relevant Options search2018/11/15Since

main

task2001 Merge from this branch...

Advanced merge

Create child branch ...

Switch workspace to this branch

Diff branch

The GUI will guide us through the merge process. In this case, there’s no possible conflict since there are
no new changesets on the main branch that could conflict with task2001, so all we have to do is checkin
the result of the merge. In the Pending Changes view, you’ll see a "merge link" together with the
modified foo.c. Something like this:

40 | A Plastic SCM primer

Plastic SCM ×

Workspace Explorer

Pending Changes

Branch Explorer

Path Status Size Type Date modified

Refresh Checkin Undo Options filter

Type your comments here

Changed-

foo.c Replaced/Checkedout 3 bytes Text 1 min ago

AC

1 pending merge link(s). Pending merge links will be committed when you checkin your changes

Merge link description

Merge from cs:2 at main/task2001@default@localhost:8087

See "Plastic merge terminology" in the merge chapter to learn what "replaced" means and also the other
possible statuses during the merge.

Now, once the checkin is done, the Branch Explorer will reflect that the branch was correctly merged to
main as follows:

Plastic SCM ×

Workspace Explorer

Pending Changes

Branch Explorer

Refresh Only relevant Options search2018/11/15Since

main

task2001

We performed the entire merge operation from the Branch Explorer, but you can also achieve the same
from the Branches view (list of branches) if you prefer.

Merging from the command line
By the way, it is also possible to merge from the command line. I will repeat the same steps explained
for the GUI, but this time, running commands.

First, let’s switch back to the main branch:

>cm switch main
Performing switch operation...
Searching for changed items in the workspace...
Setting the new selector...
Plastic is updating your workspace. Wait a moment, please...
Downloading file c:\Users\pablo\wkspaces\demowk\foo.c (8 bytes) from default@localhost:8087
Downloaded c:\Users\pablo\wkspaces\demowk\foo.c from default@localhost:8087

And now, let’s run the merge command:

Merge a branch | 41

>cm merge main/task2001
The file /foo.c#cs:2 was modified on source and will replace the destination version

The cm merge command simply does a "dry run" and explains the potential merge conflicts.

To actually perform the merge we rerun with the --merge flag:

> cm merge main/task2001 --merge
The file /foo.c#cs:2 was modified on source and will replace the destination version
Merging c:\Users\pablo\wkspaces\demwk\foo.c
The revision c:\Users\pablo\wkspaces\demowk\foo.c@cs:2 has been loaded

Let’s check the status at this point:

>cm status
/main@default@localhost:8087 (cs:1 - head)

Pending merge links
 Merge from cs:2 at /main/task2001@default@localhost:8087

Changed
 Status Size Last Modified Path

 Replaced (Merge from 2) 21 bytes 14 seconds ago foo.c

Added
 Status Size Last Modified Path

 Private 6 bytes 7 minutes ago bar.c

As you can see, it says foo.c has been "replaced," same as the GUI did.

A checkin will confirm the merge:

>cm ci -c "merged from task2001"
The selected items are about to be checked in. Please wait ...
\ Checkin finished 0 bytes/0 bytes [##################################] 100 %
Modified c:\Users\pablo\wkspaces\demowk
Replaced c:\Users\pablo\wkspaces\demowk\foo.c
Created changeset cs:3@br:/main@default@localhost:8087 (mount:'/')

And this way, we completed an entire branch merge from the command line ὤ�.

Learn more
This was just an intro to show you how to perform a basic merge, but there is an entire chapter in this
guide about the merge operation where you’ll learn all the details required to become an expert.

42 | A Plastic SCM primer

Annotate/blame a file
Annotate, also known as blame, tells you where each line of a file comes from. It is extremely useful to
locate when a given change was made.

Consider the following scenario where a file foo.cs was modified in each changeset:

main

13

task2001

12 16

14

15

And now consider the following changes made to the file in each changeset:

12

Print("Hello");50

Print(i);70

}90

for (int i=0; i< 10; ++i)60

{40

static void Main()30

{20

class Program10

}80

13

Print("Hello");50

Print(i);70

}90

for (int i=0; i< 10; ++i)60

{40

static int Main()30

{20

class Program10

}80

14

Print("Hello");50

Print(i+1);70

}90

for (int i=0; i< 11; ++i)60

{40

static int Main()30

{20

class Program10

}80

15

Print("Bye");50

Print(i);70

}90

for (int i=0; i< 13; ++i)60

{40

static int Main()30

{20

class Program10

}80

16

Print("Bye");50

Print(i+1);70

}90

for (int i=0; i< 16; ++i)60

{40

static int Main()30

{20

class Program10

}80

pablo borja pablo jesus

miguel

I marked in green changes made in each of the revisions compared to the previous one and specified
the author of each change at the top of the file.

The annotate/blame of the file in revision 16 will be as follows:

Annotate/blame a file | 43

16

Print("Bye");50

Print(i+1);70

}90

for (int i=0; i< 16; ++i)60

{40

static int Main()30

{20

class Program10

}80

pablo cs:12 br:/main 9 days ago

pablo cs:12 br:/main 9 days ago

borja cs:13 br:/main 3 days ago

pablo cs:12 br:/main 9 days ago

pablo cs:15 br:/main 1.5 days ago

jesus cs:16 br:/main 45 min ago

miguel cs:14 br:/main/task2001 2 days ago

pablo cs:12 br:/main 9 days ago

pablo cs:12 br:/main 9 days ago

Take some time to scrutinize the example until you really understand how it works. Annotate takes the
contents of the file in the changeset 16, then walk back the branch diagram diffing the file until the
origin of each line is found.

In our case, it is clear that lines 10, 20, 40, 80, and 90 come from the changeset 12 where the file was
initially added.

Then line 30, where Borja changed the return type of the Main function from void to int, belongs to
changeset 13.

Line 50 is where Pablo changed Print("Hello"); by Print("Bye"), and it is attributed to changeset 15.

Then line 60 is marked in red because it was modified during a merge conflict; changeset 14 in
main/task2001 modified the line differently than changeset 15 in main, so Jes??s had to solve the merge
conflict and decided to modify the loop, so it finally goes from 1 to 16.

Finally, line 70 comes from changeset 14 in task2001 where Miguel modified the line to be Print(i+1);

Since Plastic always keeps branches (see "We don’t delete task branches") annotate tells you the task
where a given change was introduced, which is great help to link to the right Jira or any issue tracker you
might use.

Please note that the GUI will use a gradient to differentiate the most recent changes from the older
ones.

Annotate/blame from command line and GUI
Annotating a file is easy from the GUI; Navigate to the Workspace Explorer, locate the file, right-click and
select "annotate."

From the command line, run:

> cm annotate foo.c

44 | A Plastic SCM primer

You annotate a given revision of a file
You don’t annotate a file but a given revision of a file. For example, in the previous example, annotating
the file in changeset 16 is not the same as changeset 14 or 15.

For example, if you annotate changeset 12, all the lines will be attributed to changeset 12 since this was
where the file was added. If you annotate 13, all lines will belong to 12 except line 30 marked as created
in 13.

If a line is modified several times, the line closer to the destination changeset will be marked as "creator"
of the line.

Semantic annotate
You probably know by now that we are obsessed with improving diffs and merges by parsing
code. Our plan is to strengthen annotate that if you move a code fragment or a full-
function/method to a different location within the file, annotate considers that move and
continues tracking back the line until it reaches its original creation point.

And, the goal is to extend that to cross-file operation too. So, expect great improvements in this
area in the coming versions ὤ�.

Push and pull
Unless you’ve been living under a rock, you’ve heard of distributed version control (DVCS), and you know
that the two key operations are push and pull.

I’m not going to explain what they mean in detail since we have a chapter dedicated to distributed
operation, but I’ll just introduce the basics.

Suppose you create a new repository and want to clone the main branch created in the default repo to
the new repository.

> cm repository create cloned@localhost:8087
> cm push main@default@localhost:8087 cloned@localhost:8087

The cm push command pushes the main@default branch to the "cloned" repo.

Imagine that, later, some new changes are created in main@cloned, and you want to pull them to
main@default.

> cm pull main@cloned@localhost:8087 default

I used a couple of repos on my localhost server, but the following would be possible:

> cm push main@default@localhost:8087 default@codice@cloud
> cm push main@default@localhost:8087 newrepo@skull.codicefactory.com:9095

Provided that the destination repos default@codice@cloud and newrepo@skull.codicefactory.com:9095

Push and pull | 45

were previously created.

Pushing and pulling from the GUI is even easier since there are options to do that from every branch
context menu in the Branch Explorer view and Branches view.

Finally, the GUI comes with a sync view to let you synchronize many branches in bulk. It is worthwhile to
learn how the sync view works by reading the GUI reference guide [https://www.plasticscm.com/download/
help/syncview].

Learn more
• Master the most frequent command line actions by reading the command line guide

[https://www.plasticscm.com/download/help/commandline].

Keep reading this guide to learn more details about Plastic SCM ὤ�.

46 | A Plastic SCM primer

https://www.plasticscm.com/download/help/syncview
https://www.plasticscm.com/download/help/commandline

ONE TASK - ONE BRANCH

Before we jump into how to do things in Plastic, I will describe in detail the work strategy we recommend
to most teams. Once that is clear, finding your way through Plastic will be straightforward.

As we saw in the section "A perfect workflow", task branches are all about moving high-quality work
quickly into production.

Branch Code Review Merge & test DeployTask

Each task will go through a strict process of code development, code review and testing before being
safely deployed to production.

This chapter covers how to implement a successful branch per task strategy, including all the techniques
and tactics we learned over the years.

Branch per task pattern
We call it task branches, but the actual branch per task strategy has been around for +20 years
[http://www.bradapp.com/acme/branching/branch-creation.html#BranchPerTask].

There are many different branching patterns but, over the years, we concluded task branches are really
the way to go for 95% of the scenarios and teams out there.

The pattern is super simple; you create a new branch to work on for each new task in your issue tracker.

The following is a typical diagram (it perfectly fits with the Branch Explorer visualization in Plastic) of a
branch per task pattern:

Branch per task pattern | 47

http://www.bradapp.com/acme/branching/branch-creation.html#BranchPerTask

main

BL101 BL102

task1213

task1209

task1221

task1213 is already finished and merged back to main, task1209 is longer and still ongoing (and it has
many changesets on it), and task1221 was just created, and the developer only performed a single
checkin on it.

All about branching patterns
If you want to master branching patterns, I strongly recommend that you grab a copy of "Software
Configuration Management Patterns: Effective Teamwork, Practical Integration"
[http://scmpatterns.com] by Steve Berczuk with Brad Appleton.

It might be close to a couple of decades-old already, but it is still relevant as the real Bible on
branching.

In fact, it was part of the inspiration on why we created Plastic SCM in the first place ὠ�.

Branch naming convention
We like to stick to the following pattern: prefix + task number. That’s why the branches in the example
above were named task1213, task1209, and task1221. "task" is the prefix and the number represents the
actual task number in the associated issue tracker.

The following is an example from our repo:

48 | One task - one branch

http://scmpatterns.com
http://scmpatterns.com

You can see how we use the prefix "SCM" and then the task number. In our case, we use SCM because
we build a source code management system ὤ�. You see how some team members prefer SCM in
uppercase, and others use lowercase… well; I believe it is just a matter of self-expression.


We also use the prefixes to link with the issue tracker, for example, with Jira
[https://www.plasticscm.com/download/help/jiraintegrationclientconfiguration].

The screenshot also shows a description for each branch together with the number. This is because the
Branch Explorer retrieves it from the issue tracker. You can also see the branch description by selecting
"display branch task info" [https://www.plasticscm.com/download/help/displaybranchtaskinfo].

We see some teams using long branch names, which describes the task. Is that wrong? Not really, but
we truly prefer to direct the conversation based on univocal numbers. In fact, see what our Kanban
board looks like on any day: the entire discussion is always about tasks, and there’s no doubt where the
associated code is.

Branch naming convention | 49

https://www.plasticscm.com/download/help/jiraintegrationclientconfiguration
https://www.plasticscm.com/download/help/displaybranchtaskinfo

Task branches are short
Remember the Scrum rule that says tasks shouldn’t be longer than 16 hours to ensure they are not
delayed forever and keep the project under control? Well, we love that.

At the time of writing, we had just switched to Kanban for a couple of months after almost 300 sprints of
two weeks each. We changed to Kanban to reduce task cycle times, but we like many practices of Scrum.
And keeping tasks short is one of them.

Task branches must be closed quickly. It is great to have many small tasks you can close in just a few
hours each. It is good to keep the project rhythm, to keep the wheels spinning, and never stop deploying
new things. A task that spans for a week stops the cycle.

"But some tasks are long" – I hear you cry. Sure, they are. Splitting bigger tasks into smaller ones is an
art and science in itself. You need to master it to get the best out of task branches and a solid overall
continuous delivery cycle.

There are a few red flags to keep in mind:

• Don’t create "machete cut" tasks. You ask someone to cut a task into smaller pieces, and then they
create a pile of smaller ones that don’t make any sense in isolation and can’t be deployed
independently. No, that’s not what we are looking for. Of course, creating shorter tasks from a
bigger one can be daunting at times, but nothing you can’t solve throwing a little bit of brainpower
to it.

• Every team member needs to buy it. It is not just about "let’s make all tasks consistently shorter"; it
is about understanding life is easier if you can close and deliver a small piece of a larger task today
instead of struggling with it for a few days before delivering anything. It is all about openly
communicating progress, avoiding silos, and removing "I’m at 80% of this" day after day.
Predictability, responding to the problem quickly, and agile philosophy is under the "short branches"
motto.

Task branches are not feature branches
I admit sometimes, I wrongly use both terms interchangeably. Feature branches got viral thanks to Git
Flow in the early Git explosion days. Everyone seemed to know what a feature branch was, so sometimes
I used it as a synonym for task branches. They are not.

A feature can be much longer than a task. It can take many days, weeks, or months to finish a feature.
And it is definitely not a good idea to keep working on a branch for that long unless you want to end up
with a big-bang integration.

I’m not talking just about merge problems (most of our reality here at Plastic is about making impossible
merges easy to solve, so that’s not the problem), but about project problems. Delay a merge for a
month, and you’ll spend tons of unexpected time making it work together with the rest of the code, and
solving merge problems will be the least of your problems.

Believe me, continuous integration, task branches, shorter release cycles were all created to avoid big
bangs, so don’t fall into that trap.

To implement a feature, you will create many different task branches, each of them will be merged back
as soon as it is finished, and one day, the overall feature will be complete. And, before you ask: use
feature toggles if the work is not yet ready to be public, but don’t delay integrations.

50 | One task - one branch

Keep task branches independent
Here is the other skill to master after keep task branches short: keep task branches independent.

Here is a typical situation:

main

BL101

task1213

task1209

You just finished task1213 and have to continue working on the project, so the obvious thing to do is
simply continue where you left it, right?

Wrong.

This happens very often to new users. They just switched from doing checkins to trunk continuously and
feel the urge to use their previous code, and even a bit of vertigo (merge-paranoia) if they don’t.

You have to ask yourself (or your teammates) twice: do you really need the code you just finished in
task1213 to start task1209? Really? Really?

Quite often, the answer will be no. Believe me. Tasks tend to be much more independent than you first
think. Yes, maybe they are exactly on the same topic, but you don’t need to touch exactly the same code.
You can simply add something new and trust the merge will do its job.

There is a scenario where all this is clearer and more dangerous: suppose that 1213 and 1209 are bug
fixes instead of tasks. You don’t want one to depend on the other. You want them to hit main and be
released as quickly as possible; even if they touch the same code, they are different fixes. Keep them
independent!

And now you also get the point of why keeping tasks independent matters so much. Look at the
following diagram:

Keep task branches independent | 51

main

BL101 BL102

task1213

task1209

task1209 was merged before task1213. Why is this a problem? Well, suppose each task goes through a
review and validation process:

• task1209 was reviewed and validated, so the CI system takes it and merges it.

• But, task1213 is still waiting. It wasn’t reviewed yet… but it reached main indirectly through 1209.

See the problem?

You’re probably thinking: yes, but all you have to do is tell the team that 1209 doesn’t have to be merged
before 1213 is ready.

I hear you. And it worked moderately well in the times of manual integration, but with CI systems
automating the process now, you are just creating trouble. Now, you have to manually mark the task
somehow so that it is not eligible for merge (with our mergebots and CI integrations, it would be just
setting an attribute to the branch). You are just introducing complexity and slowing the entire process
down. Modern software development is all about creating a continuous flow of high-quality changes.
These exceptions don’t help.

What if you really need tasks to depend on each other
There will be cases where dependencies will be required. Ask yourself three times before taking the
dependency for granted.

If tasks need to depend on each other, you need to control the order in which they’ll be integrated. If you
are triggering the merges manually (discouraged),ensure there is a note for the build-master or
integrator in charge.

If you have an automatic process in place, you’ll need to mark branches somehow so they are not
eligible for merge by the CI system or the mergebot.

Techniques to keep branches independent


This is a pretty advanced topic, so if you are just finding your way through Plastic, it is better to
come back to it when you have mastered the basics.

There will be other cases where you’ll be able to keep tasks independent with a bit of effort.

Very often, when you need to depend on a previous task, you need just some of the changes done there.

Use cherry pick carefully to keep branch independent:

52 | One task - one branch

If that’s the case, and provided you were careful enough to isolate those changes in an isolated
changeset (more on that in the "Checkin often and keep reviewers in mind" section), you can do a cherry
pick merge (as I explain in the "Cherry picking" section).

main

13

BL101

task1213

task1209

A cherry pick will only bring the changes made in changeset 13, not the entire branch. The branches will
continue being primarily independent and much safer to merge independently than before.

Of course, this means you must be careful with checkins, but that’s something we also strongly
encourage.

Add a file twice to keep tasks independent:

There is a second technique that can help when you add a new file on task1213 and you really need this
file in the next task. For example, it can be some code you really need to use. This is a little bit contrived,
but it works: Add the file again in task1209. Of course, this only works when you just need something
small. If you need everything, copying is definitely not an option.

Now, you probably think I’m crazy: Copy a file manually and checkin again? Isn’t it the original sin that
version control solves?

Remember, I’m trying to give you choices to keep tasks independent, which is desirable. And yes, this
time, this technique can help.

You’ll be creating a merge conflict for the second branch (an evil twin as we call it) that you’ll need to
solve, but tasks will stay independent.

The sequence will be as follows: task1209 will merge without conflict.

Keep task branches independent | 53

main

13

BL101

task1213

task1209

add Foo.cs

add Foo.cs again!

Then, when task1213 tries to merge, a conflict is raised:

main

13

BL101

task1213

task1209
add Foo.cs

add Foo.cs again!

1213 doesn't
merge cleanly

If you are doing manual merges to the main branch, all you have to do is solve the conflict and checkin
the result. So it won’t be that hard.

But, if you are using a CI system or a mergebot in charge of doing the merges, there won’t be a chance
to make manual conflict resolution there, so the task will be rejected.

If that happens, you’ll have to follow what we call a rebase cycle: simply merge down from main to
task1213 to solve the problem, and then the branch will merge up without conflicts.

main

13

BL101

task1213

task1209

32


Note for Git users

Git rebase is very different from what we call rebase in Plastic. Rebase in Plastic is simply "merge
down" or "changing the base." For example, branch task1213 "started from" BL101 before, but after
the rebase it virtually starts from changeset 32.

54 | One task - one branch

Checkin often and keep reviewers in
mind
Ever heard this? Programs must be written for people to read and only incidentally for machines to
execute. It is from the legendary book "Structure and Interpretation of Computer Programs (MIT)."

It is a game-changer. We should write code thinking about people, not computers. That’s the
cornerstone of readable code, the key to simple design. It is one of the cornerstones of agile, extreme
programming, and other techniques that put code in the center of the picture.

Well, what if you also checkin for people to read? Yes, it might not be easy at first, but it really pays off.

Let’s start with a few anti-patterns that will allow me to explain my point here.

Antipattern 1: Checkin only once
Imagine that you have to do an important bug fix or add a new feature, but you need to clean up some
code before that.

This is one way to do it:

BL101

131

main

135 141

145

scm22150

Fixed the bug. Made a bunch
of changes to clean up and
refactor. Changed
DoCalculation.cs.

Then the reviewer comes, diffs the changeset number 145, finds there are 100 modified files, and… goes
for a coffee or lunch, or wants to leave for the day… ouch!

And this is how the traditional way to diff branches provokes context switches, productivity loss, or
simply "ok, whatever, let’s approve it."

Antipattern 2: Checkin for yourself
Let’s try again with a different checkin approach:

Checkin often and keep reviewers in mind | 55

BL101

131

main

135 141

145

scm22150

Initial
checkin.
Checkpoint.

149 150 153

Second
checkpoint.

Out for
the day.

Fixed bug
detected
by unit
tests.

This time the developer checked in several times during development. It is beneficial for him because he
protected his changes to avoid losing them in the event of a weird crash or something. Multiple checkins
can also help when you are debugging or doing performance testing. Instead of commenting code out
and going back and going crazy, you create real "checkpoints" you know you can go back later safely if
you get lost in the way.

But the reviewer will go and simply diff the entire branch because the individual checkins won’t be
relevant for him. And the result will be as demotivating as it was in the previous case: 100+ files to
review. Ouch!

Checkin for the reviewer
Now, let’s follow the rule we all use: checkin with the reviewer in mind. Every checkin has to help the
reviewer follow your train of thought, follow your steps to understand how you tackled the task.

Let’s try again:

BL101

131

main

135 141

145

scm22150

Cleaned up
some unused
usings.

149 150 153

Just extracted
WriteFile to
FileWriter.Write
. No extra
changes.

Renamed Calc.Run
to
MRR.LaunchCalc.
Tons of files
touched but just
a rename. Don't
panic :-P

This is the actual
fix. Check
MRR.GetFromCustomer
first, then follow the
changes for that. The
key thing is inside
the Retrieve query.

21 files 12 files 51 files 2 files

161

ToMonthly()
removed, no
longer used
now.

1 file

Now, as a reviewer, you won’t go and diff the entire branch. Instead, you’ll diff changeset by changeset.
And, you’ll be following the pre-recorded explanation the author made to clarify each step of the task.
You won’t have to find yourself against a bold list of 100+ modified files. Instead, you’ll go step by step.

First, you see 21 files modified, but the comment says it was just about cleaning up some C# usings. The
list of 21 files is not terrifying anymore; it is just about removing some easy stuff. You can quickly glance

56 | One task - one branch

through the files or even skip some of them.

Then, the next 12 files are just about a method extracted to a new class, and the affected callers having
to adapt to the new call format. Not an issue either.

Next comes 51 files, but the comment clearly says it is just because a method was renamed. Your
colleague is telling you it is a trivial change, probably done thanks to the IDE refactoring capabilities in
just a few seconds.

Then, it comes the actual change, the difficult one. Fortunately, it only affects 2 files. You can still spend
quite a lot of time on this, really understanding why the change was done and how it works now. But it is
just two files. Nothing to do with the setback produced by the initial vision of 100 files changed.

Finally, the last change is a method that has been removed because it is no longer invoked.

Easier, isn’t it?

Objection: But… you need to be very careful with
checkins, that’s a lot of work!
Yes, I hear you. Isn’t it a lot of work to write readable code? Isn’t it easier and faster to just put things
together and never look back? It is not, right? The extra work of writing clean code pays off in the mid-
term when someone has to touch and modify it. It pays off even if the "other person touching the code"
is your future self coming back just three months later.

Well, the same applies to carefully crafted checkins. Sure, they are more complex than "checkpoint"
checkins, but they really (really!) pay off.

And, the best thing is that you get used to working this way. Same as writing readable code becomes a
part of your way of working once you get used to it, doing checkins with reviewers in mind just becomes
natural.

And, since development is a team sport, you’ll benefit from others doing that too, so everything flows
nicely.

Task branches turn plans into solid
artifacts that developers can touch
This is where everything comes together. As you can see, branches don’t live in isolation. They are not
just version control artifacts that live on a different dimension than the project. It is not like branches are
for coders and plans, scrums, tasks, and all that stay on a distant galaxy. Task branches close the gap.

Often, developers not yet in branch-per-task tend to think of tasks as some weird abstract artifact
separated from the real job. It might sound weird, but I bet you’ve experienced that at some point.
When they start creating a branch for each task, tasks become something they touch. Tasks become
their reality, not just a place where some crazy pointy-haired boss asked them to do something. Task
branches change everything.

Task branches turn plans into solid artifacts that developers can touch | 57

Handling objections
But, do you need a task in Jira/whatever for every task? That’s a lot of bureaucracy!

It is a matter of getting used to. And it takes no time, believe me. We have gone through this many times
already.

Once you get used to it, you feel naked if you don’t have a task for your work.

Submitting a task will probably be part of some product manager/scrum master/you-name-it most of
the time. But even if, as a developer, you have to submit it (we do it very often), remember every minute
saved in describing what to do will save you an immense amount of questions, problems and
misunderstandings.

I know this is obvious for many teams, and you don’t need to be convinced about how good having an
issue tracker for everything is, but I consider it appropriate to enforce the key importance of having tasks
in branch per task.

We use an issue tracker for bugs but not new features.

Well, use it for everything. Every change you do in code must have an associated task.

But some new features are big, and they are just not one task and…

Sure, that’s why you need to split them. Probably what you are describing is more a story or even an epic
with many associated tasks. I’m just focusing on tasks, the actual units of work: The smallest possible
pieces of work that are delivered as a unit.

Well, fine, but this means thousands of branches in version control. That’s unmanageable!

Plastic can handle thousands of branches!

This is the list of branches of our repositories that handle the Plastic source code (sort of recursive, I
know ὠ�):

This was more than 18 thousand branches when I took the screenshot. Plastic doesn’t have issues with
that. It is designed for that.

Now, look at the following screenshot: The main repo containing the Plastic code filtered by 2018
(almost the entire year).

58 | One task - one branch

You see on the diagram (the upper part with all these lines) the area marked in red in the navigator
rendered at the bottom. Yes, all these lines just belong to a tiny fraction of what happened over the year.

So, no, Plastic doesn’t break with tons of branches, nor the tools we provide to browse it.

Ok, Plastic can deal with many branches, but how are we supposed to navigate that mess?

The zoom-out example produces this response very often. It can deal with it, but this is a nightmare!

Well, the answer is simple: You’ll never use that zoom level, same as you won’t set the zoom of your
satnav to show all the roads in Europe to find your way around Paris.

This is what I usually see in my Branch Explorer: just the branch I’m working on plus the related ones,
the main branch in this case. Super simple.

Task branches as units of change
We like to think of branches as the real units of change. You complete a change in a branch, doing as
many checkins as you need, and creating several changesets. But the complete change is the branch
itself.

Task branches as units of change | 59

Maybe you are used to thinking of changes in different terms. In fact, the following is very common:

main

124 125

cset: 121
owner: pablo
Fix core
database query
to retrieve
customers

123122121

cset: 122
owner: sergio
Typo in about
the team

cset: 123
owner: vio
New loading
form

cset: 124
owner: borja
Resource leak
freeing WPF
objects

cset: 125
owner: vio
Fix a crash on the
new loading
form

This is a pattern we call changeset per task, and it was prevalent in the old SVN days. Every single
changeset is a unity of change with this approach. The problem, as you understand, is that this way, you
just use the version control as a mere delivery mechanism. You are done, you checkin, but you can’t
checkin for the reviewer, narrating a full story, explaining changes one by one, isolating dangerous or
difficult changes in a specific changeset, and so on.

Instead, we see the branch as the unit of change. You can treat it as a single unit, or look inside it to
discover its own evolution.

What happens when a task can’t be
merged automatically?
The purpose of task branches with full CI automation is to automatically test, merge, and deploy tasks
when they are complete. The idea is that the integration branch, typically the main branch, is protected
so nothing except the CI system or the mergebot driving the process can touch it.

So, what happens when a merge conflict can’t be solved automatically?

Consider the following scenario where a couple of developers —Manu and Sara— work on two
branches. Suppose at a certain point Manu marks his branch as done.

60 | One task - one branch

main

BL101

task1213

task1209

status: done

The CI system monitoring the repo, or even better, the Plastic mergebot driving the process, will take
task1213, merge it to the main branch in a temporary shelf, ask the CI to build and test the result, and if
everything goes fine, confirm the merge.

The mergebot will notify the developer (and optionally the entire team) that a new branch has been
merged and a new version labeled. Depending on your project, the new version BL102 may also be
deployed to production.

main

BL101 BL102

task1213

task1209

Slack: task1213 merged correctly.
Working on the next task ;-)

status: merged

Now Sara continues working on task1209 and finally marks it as complete, letting the mergebot know
that it is ready to be merged and tested.

What happens when a task can’t be merged automatically? | 61

status: done

main

BL101 BL102

task1213

task1209

Slack: task1209 can't be merged,
please solve the conflicts first

status: merged

But unfortunately, the changes made by Manu, which were already merged to main to create BL102,
collide with the ones made by Sara, and the merge requires manual intervention.

The merge process is driven by the CI system or the mergebot, but neither can solve manual conflicts.

So what is the way to proceed?

Sara needs to run a merge from the main branch to her branch to solve the conflicts and make her
branch ready to be automatically merged by the mergebot or CI.

status: open

main

BL101 BL102

task1213

task1209

status: merged

This is what we call a rebase in Plastic jargon, although it is quite different from a rebase in other
systems. Check "Plastic vs. Git rebase" in the merge section.

Once the conflict is solved, the merge can be automatically merged to the main branch.

62 | One task - one branch

Slack: task1209 can now be
merged correctly…

main

BL101 BL102

task1213

task1209

status: merged

status: done

As you see, in a bot-controlled integration branch, only branches that merge cleanly are introduced and
used to build, test, and deploy.

We don’t delete task branches
By now, I’m sure it is crystal clear for you how important task branches are for us. And, of course, we
keep them around; we don’t delete them.

I cover this topic because users rushing away from Git frequently ask how they can delete their
branches. They are as horrified at first when they learn they can’t!

What follows is an explanation of one of the key differences between Git and Plastic. If you are not really
interested in some internals, you can definitely skip this section. You can find a more detailed
explanation into Why we don’t delete branches in Plastic [https://www.plasticscm.com/download/help/
dontdeletebranches].

As I mentioned, in the Git world, it is extremely common to remove branches once they are merged.
There are several reasons for this.

1. Branches in Git and Plastic are different.

In Plastic, branches are changeset containers, while in Git, they are just pointers.

0 master1

2 3 task0024

0

main

1

task002 2 3 4

0

master

1 2 3 task0024Merge =>

Merge => 0

main

1

task002 2 3 4

5

Git

Plastic SCM

This means that in Git, it is very easy to lose where a commit came from, while in Plastic, changesets
always belong to a single branch, and their history is preserved.

In the image above, after the merge, you can’t figure out if commit 3 was created in task002 or

We don’t delete task branches | 63

https://www.plasticscm.com/download/help/dontdeletebranches

master in Git, but in Plastic, commit 3 will always belong to task002.

We imagine Plastic as a wise librarian — preserving history for the sake of not repeating mistakes
and creating lots of knowledge from previous work.

I really like to show the blame of a file, spot a given line, and immediately see which task branch it
was created in. This gives me lots of context. In Git, you simply lose that.

Yes, that’s why they like to squash branches, delete them, and so on, but we have a radically different
vision about all that. We want to tell a story on each checkin, to help reviewers speed up their work
instead of grouping tons of changes together into a single changeset ready to be merged.

2. Most Git GUIs crash with lots of branches.

We have +18k branches in our repos and Plastic doesn’t break. We have customers with way more
than that. In Git, you need to delete branches because GUIs are not ready to deal with them. Open
two of the most popular Git GUIs out there with as few as 1k branches and watch them crash. Not
that they are mistaken or anything — they simply follow a different way of working. We optimized all
our tools to be ready to deal with limitless numbers of branches.

A finished task must be ready to be
deployed
Another thing to keep in mind: every task branch must be ready to integrate once it is finished. It might
sound obvious, but it is a source of confusion in many teams.

"Yes, it is ready, but it can’t be merged because…"

That’s not good.

Once you set the task as "done," as a developer, it means it is ready to be delivered. However, if the
change is not good enough, if it is fragile, or will make the product behave awkwardly, then the task
shouldn’t be set as finished.

Branch Code Review Merge & test DeployTask Done

The "done" gate: once the task crosses it
chances are it will go directly to production

You are crossing a point of no return (actually, there will be a return if the task doesn’t make the cut of
code review, build, testing), and you must be ready for it.

It is a small price to pay for automation, but it is really worth it. The only thing is that the team has to get
used to it. I can’t stress that enough. Most of us grew up exposed to environments with lots of manual
intervention. So, marking tasks as done was not that crucial. It was simply "yes, I’m done, just a small
detail to polish before we deploy it and…". That’s not enough anymore.

64 | One task - one branch

If you or your team are not yet there, try to get used to it quickly. Done means ready for production. It
can feel overwhelming at first, but it is not; it is a matter of getting used to, just about being a little bit
more careful. In return, you get quite an immense peace of mind because you know that moving your
task to production is easy and fully automated and not something that will require someone’s attention
(maybe yours) at 2 a.m.

Feature toggles
If you are already familiar with feature toggles, maybe the entire section was irrelevant for you ὤ�.

The question we all ask when confronted with "every task must be ready to deploy" is: what about parts
of a bigger functionality that is not yet complete?

Because we already asked for tasks to be independent, which usually requires them to be carefully split.
But, we came up with a new requirement: small and deployable, which sounds counter-intuitive.

Part 1

Feature

borja Part 4

Part 2vio

Part 3ruben

Part 5

Part 7

Part 6

You have a big feature split into 7 parts that will be converted to tasks and implemented using task
branches. How is it possible to deploy Part 4 if everything else is not ready?

It’s effortless: You merge it to the main branch and even deploy it, although it will be hidden. It doesn’t
need to be hidden for everyone; maybe you can enable the feature for the dev team or for a small
number of early adopters. If nothing really works at the very initial phases, it can be simply hidden for
everyone.

What is the advantage then if nobody will see it? So why should it be deployed at all?

Hidden doesn’t mean the new code is not passing tests on every release. When the entire feature is
ready to be activated, the individual parts have been tested several times. And exercises in individual
exploratory tests. And the integration of the last piece won’t trigger a big-bang merge, just a smaller
part going through. And the complete deploy cycle, whatever your actual system might be, will be fully
exercised.

It is all about setting up a workflow and sticking to it all the time, not only when things are easy or hard.
You stick to a way of working and exercise it often so that those long release nights vanish away!

Review each task

Review each task | 65

How we started reviewing every single task
Eons ago, we tried to do formal reviews. You know, the entire thing with a moderator, a short meeting, a
scribe, and the author explaining. We only did it maybe twice. Too heavy. It wasn’t natural, we didn’t
really adopt it, and it was always being postponed.

So, we changed our minds and started the "no task is merged if somebody else doesn’t review it" around
late 2012.

We suffered an initial slowdown for a couple of weeks, but then we all got used to it.

Code reviews proved to be great to train newcomers on "how things get done here" to keep some
coherence in the design and the code simple.

Reviews are crucial to prevent code from rotting
Now, fast forward to the present and the DevOps era. Remember the slogan: a continuous flow of high-
quality changes ready to be deployed.

You only achieve actual speed if the code stays ready to change. The keyword is stays. Code rots. It gets
worse with time after a few changes here and there.

I always like to share this graphic coming from two classics, Boehm’s "Software Economics" and Beck’s
"Test-Driven Development":

This is a nice graphic to help management understand why refactors and code reviews pay off ὤ�.

Refactoring is the key practice, and code reviews only add to this effort. With every single finished task,
there is a chance to make sure the actual design of the solution is fine, that the code is simple enough,
and the style matches the rest of the team, etc.

66 | One task - one branch

Reviews to find bugs
Reviews are also great if they can stop new bugs before they reach the release. But, in my experience, it
only happens if the review is very short. Really difficult or long tasks with many modified files or new
ones are incredibly time-consuming and hard to review.

And here is where "checkin for the reviewer" kicks in: everything is much simpler with the developer’s
help.

Some useful tips:

• Separate the actual bug fixes from refactors (covered already).

• Separate simple housekeeping changes from the key ones in different changesets. This will also help
reviewers focus.

• Mark changes you are unsure about. Don’t be shy to drive the reviewer. Is there something you are
not really sure about? Say it. It can be a checkin comment or a note on the task (your Jira?) saying,
"please, check cset 4893b715 because I’m unsure it will overflow". Otherwise, the risk is that an
important change will go unnoticed, and the reviewer spends time on something pointless instead of
the essential stuff. When we develop something big, with lots of new code, we practice this
intensively to focus the reviewer’s attention on what really matters. Nothing prevents them from
reading everything, but at least we know the key things are checked.

How many reviewers?
It really depends on the team. The key is to have at least one, so every task is code reviewed.

More than one can be great, at the cost of a bigger impact on everyone (context switches, extra work
that piles up together with actual coding), and an increase in task cycle time (more people involved to
move it forward).

We often have one reviewer, but in complicated tasks, ask more than one colleague to review specific
parts they know better. It is not something that happens every day for us, though.

How to actually do the reviews
What tools? I hear you asking. Well, we provide a built-in code review system in Plastic, and at the time of
writing, we just finished designing a major improvement. So, you can definitely use Plastic’s code review
or go for a third party like Crucible.

You can even perform totally manual reviews; I’ve done this several times. I open a Plastic branch and
diff changeset by changeset, and simply take notes in the issue tracker, in a new enclosure, of what
needs to be changed. It is not super fancy or anything, but it works.

Validation – exploratory tests on each
task

Validation – exploratory tests on each task | 67

A short intro to Exploratory Testing
A great book on Exploratory Testing that we all love here: "Explore It!" [https://pragprog.com/book/ehxta/
explore-it] published by Pragmatic Programmers.

Manual tests done by humans shouldn’t be repetitive tasks. If they are repetitive and follow a script, then
they should be automated. Of course, time and budget restrictions prevent this, and many teams still do
tons of manual testing, but in an ideal world, those are all executed by test frameworks.

What are Exploratory Tests, then?

Simply put: Exploratory Testing is traditional structured random testing. It gives some rules to organize
a manual testing process that basically consists of letting the testers arbitrarily test the software instead
of constraining them with a script (which could be automated). For me, exploratory testing is the same
for testing as agile methods are to coding; it can look at code and fix, but there’s some order which
prevents the chaos from happening.

Exploratory testing is based on well-planned and time-constrained sessions. First, the team plans what
needs to be tested in advance and writes a set of charters or test goals. Then, they define what they
need to test but not how to test it (you can always give some ideas to help, but you can’t create a script).

There are two important topics here:

• Tests are planned: which means you get rid of chaotic, random testing.

• Test sessions are time-boxed: you limit the time to test a given functionality or a part of your
software, so you clearly state results should come quickly. Of course, complicated scenarios won’t be
so easy to constrain. Still, you usually can expect results to come during the first minutes/hour of
testing, which will help keep people concentrated on what they’re doing.

Each tester takes a charter and starts testing the assigned part of the software, creating a log called
testing session in which they’ll write how long it took to set up the test, how long they were actually
testing, writing documentation and also exploring unrelated but valuable pieces of software (you start
with something and continue with something else you suspect that can fail).

The testing session will record all the issues (minor problems) and bugs detected.

So, there’s probably nothing special about exploratory (my explanation is very simple too) but it helps to
organize a whole testing process; it tells you what you should plan and how (constrained times, normally
no more than 2 hours per session), and also what results to expect and how to record them.

We record all the test sessions in our internal wiki and link each issue/bug to our bug tracking system,
setting a specific detection method to determine how many issues and bugs were detected using
exploratory testing. Linking from the wiki to the issue tracking and back allows for better navigation.

Validation
We call it "validation," although it is too big of a name that can invoke the demons of formal validation or
something, so I better not go there.

This is how it works: someone gets the feature or bug fix and ensures it does what it should.

It is important to highlight that "validations" are not manual tests. As I said, we are supposed to
automate those.

The validation is just trying to figure out if what we did makes sense for the user if it is usable if it really

68 | One task - one branch

https://pragprog.com/book/ehxta/explore-it

fixes the bug (even if a unit test or GUI test was added).

It is some sort of short Exploratory Test that helps ensure we produce a usable and consistent product.
Validation can be as short as 5 minutes (switch to the branch, build the code, run it, set up an example,
etc.) or as long as 1-2 hours if the scenarios to test are very complex. But, the usual is just 10-20 minutes
each at most.

By the way, sometimes we do longer (1-4h) exploratory testing sessions following what "Explore it!"
describes. We generate the reports for each session: Captured bugs, followed up with new tasks, etc. We
do it when we have big features, but the actual daily practice is the short validations.

A small story on our experience with Exploratory
Around 2012 we hired an external team to help us do weekly Exploratory Tests, but it didn’t work as
expected.

I mean, they were not finding the kind of issues we expected, and we struggled to find out why.

The problem was that the testing professionals were not used to most of the development tasks related
to the daily use of Plastic SCM. We thought we were doing something wrong. But, at the end of the day,
in my opinion, you need testers who resemble the kind of users your software will have.

And Plastic SCM users are… well, developers. They know how to use Eclipse, Visual Studio, the command
line, doing branching, merging, diffing code, creating actual code… the sort of things the external testers
we hired were not used to, and that’s why we failed.

Nowadays, daily validations and code reviews are part of our day-to-day development, and of course,
they are time-consuming, but we considered that they are worth every minute. We try to organize our
days to avoid interruptions, so many do the pending reviews and validations early in the morning, then
the rest of the day can be spent on development.

Some extra pros of task branches
I’ve described the branch-per-task pattern in detail and talked about the task cycle and its main
elements, so hopefully, you’ve already concluded why the branch-per-task approach is a good practice.

Now, I’ll highlight why the branch-per-task pattern is the best way to develop and collaborate for nearly
every team, almost all the time (there will be circumstances where you won’t need to branch that often,
but believe me, it won’t be so common).

Colliding worlds: serial vs. parallel development
Let’s look at a typical project following the serial development pattern, better known as mainline
development (not to be confused with trunk development). It just means there’s a single branch where
everyone checks in their changes. It’s straightforward to set up and very easy to understand. It’s the way
most developers are used to working with tools like Subversion, CVS, SourceSafe, etc.

Some extra pros of task branches | 69

main

124 125

cset: 121
owner: pablo
Fix core
database query
to retrieve
customers

123122121

cset: 122
owner: sergio
Typo in about
the team

cset: 123
owner: vio
New loading
form

cset: 124
owner: borja
Resource leak
freeing WPF
objects

cset: 125
owner: vio
Fix a crash on the
new loading
form

As you can see in the figure, the project evolves through checkins made on a single branch (the main
branch). Every developer does a series of checkins for their changes. Since it’s the central point of
collaboration for everyone, developers have to be very careful to avoid breaking the build by doing a
checkin that doesn’t build correctly.

In the example figure, we see how Vio creates a new loading form (cset: 123) but makes a mistake, and
then she has to fix it in a later check-in (cset:125). It means the build broke between 122 and 125. Every
developer updating their workspace in between would have been hit by the bug, and it most likely
happened to Borja after he checked in cset:124 and updated his workspace accordingly.

Also, if you look carefully, you’ll see we’re mixing together important changes like the one made on
cset:121 (a big change on one of the core queries, which could potentially break the application in weird
ways) with safer ones like the typo fixed in cset:122. What does that mean? It means that if we had to
release right now, the baseline would not be ready or stable enough.

Let’s see how the same scene looks like using parallel development with the branch-per-task method:

main

task113

Typo in about the team

task114

Fix core query

New loading form

task115

Free WPF objects

task116

BL131 BL131 -public BL132 BL133 -public

70 | One task - one branch

As the picture shows, several branches are involved since every task is now a branch, and there are
merge arrows (the green lines) and baselines (circles). We could have created baselines before, but you’ll
find it’s much easier to know when to create them by using a branching pattern.

Using this example as a basis, I’ll start going through the problems we can find in serial development,
how to fix them with task branches, and why this parallelism is better.

Code is always under control
How often do you check in when you’re working on mainline development? I bet you’re very careful
before checkig in because you don’t want your co-workers coming to your desk, shouting about the code
not building anymore, right?

So, where’s your code when you’re working on a difficult task— something hard to change that will take
a few days to complete? Is it under source control? Most likely, it won’t be since you’re reluctant to
checkin things that don’t compile, that are not complete, or that simply collide with other changes.

This is a big issue and pretty normal with mainline development; changes are outside version control for
long periods, until developers are completely done. The version control tool is used just as a delivery
mechanism instead of a fully-fledged VCS.

With the branch-per-task approach, you won’t have this problem: you can check in as often as you want
to. In fact, it’s encouraged. To preserve your own development process, this enables you to even tell a
story with your checkins, as we covered in the "Checkin for the reviewer" section, to preserve your own
development process.

But it was working 5 min ago!
I bet you’ve said that before! You’re working on a change, your code is working, then you change
something, it doesn’t work all of a sudden, and you lose time trying to figure out what you did
wrong (typically commenting and uncommenting code here and there, too). It’s pretty common
when you’re experimenting with changes, learning an API, or carrying out some difficult tasks. If
you have your own branch, why don’t you check in after each change? Then you don’t have to rely
again on commenting code in and out for the test.

Keep the main branch pristine
Breaking the build is something widespread when using mainline development. You check in some code
that you didn’t test properly, and you end up breaking some tests or even, worse, introducing code that
doesn’t compile anymore.

Keeping the main branch pristine is one of the goals of the branch-per-task method. You carefully
control everything entering the main branch, so there’s no easy way to break the build accidentally.

Also, keep in mind that the usage of the main branch is totally different from a branch-per-task pattern.
Instead of being the single rendezvous point for the entire team, where everyone gets synchronized
continuously, and instability can happen, the main branch is now a stable point, with well-known
baselines.

Some extra pros of task branches | 71

Have well-known starting points - do not shoot moving
targets!
When you’re working in mainline mode, it’s not often easy to describe the exact starting point of your
working copy.

Let me elaborate. You update your workspace to main at a certain point, as you can see in the following
picture. What’s that point? It’s not BL131 because there are a few changes after that. So, if you find an
error, is it because of the previous changes or due to the ones you just introduced?

main

921

BL130 -public

You update here!

You can easily say, "Well, if you’re using continuous integration, you’ll try to ensure the build is always
ok, so whatever you download will be ok." First off, that’s a pretty reactive technique - where you first
break the build and later fix it. Secondly, yes, you’re right, but still, what is this configuration? If you
update at the indicated point, you’ll be working with an intermediate configuration, something that’s not
really well-known - you’ll be shooting a moving target!

Now take a look at the situation using task branches:

main

task113

Typo in about the team

task114

Fix core query

Free WPF objects

task116

BL130 -public

As you can see, there’s a big difference. All your tasks start from a well-known point. There’s no more
guessing, no more unstable configurations. Every task (branch) has a clear, well-known stable starting
point. It really helps you stay focused on your own changes.

Update with trunk-based devel.: I took this entire section from some writing I created years ago,
dating almost to the very first days of Plastic. Most of what it says is still true, so it made sense to me to
add it for clarity. There is one major shift here: we used to do manual integration long ago, where every
single task branch was manually merged to main by an integrator (or build master). Now we automate all

72 | One task - one branch

that. So how does it change the shooting a moving target problem? Well, now every new single changeset
in main is totally trustable because it passed all tests. There are no intermediate integration changesets
anymore, so you are fine creating a new branch from each new changeset, no problem. Of course, the
full moving target stays true for teams still stuck to checkin to main and done because if that’s the case,
they might still be on shifting sands.

The psychological side: As mentioned above, it is crucial to ensure every task starts from a stable point.
The reason goes far beyond coordination and preventing bug spreading. It has an impact on
productivity. If a test fails in your new task branch after a few checkins, you know it is your stuff. It is not
finding how’s to blame. It is about the productivity impact. When something fails, and you don’t know for
certain if it worked before, you’ll have to spend minutes fighting your brain that already thinks that the
bug was provoked by someone else. Funny but true. Didn’t happen to you? But, if you are certain all
tests passed in the base of your branch, you’ll jump straight to fixing the problem you just introduced.

Enforce baseline creation
Creating baselines is a best practice. Using the branch-per-task method, baselines become a central part
of your daily work. There’s no better way to enforce a best practice than making it an integral part of
your workflow.

Automation note: Yes, if you are already using full automation, this point will be more than obvious to
you ὤ�.

Stop bug spreading
People dealing with dangerous materials work in controlled environments, and usually behind closed
doors, to prevent catastrophes from spreading if they ever happen. We can learn a valuable lesson from
them.

Look at the following mainline example: Vio introduces a bug, and immediately everyone hitting the
main branch will be affected by it. There’s no contention, there’s no prevention, and the actions are
entirely reactive. You break the code, and yes, you fix it, but the build should not have been so easily
broken in the first place.

main

125

cset: 121
owner: pablo
Fix core
database query
to retrieve
customers

122121

cset: 122
owner: sergio
Typo in about
the team

cset: 123
owner: vio
New loading
form

cset: 124
owner: borja
Resource leak
freeing WPF
objects

cset: 125
owner: vio
Fix a crash on the
new loading
form

123 124

Now, let’s take a look at the same situation with task branches. The bug will still be there, but we have a
chance to fix it before it ever hits the mainline. There’s contention, and there’s a preventive strategy in
place.

Some extra pros of task branches | 73

main
BL130 -public

New loading form

task115

Automated tests passing on each task
branch
I can’t stress how important automated tests are for task branches and any software project.

Thanks to automated testing, we can refactor and clean up code, something key for a codebase,
especially if you expect it to survive a few years.

It wouldn’t make much sense to do task branches or even trunk-based development if it wasn’t for
automated tests. What would be the gate to decide when a branch must be integrated? Just the code
review wouldn’t be enough.

Automated tests are the gate to main
Every task needs to be reviewed (and validated optionally) before being merged. But the last step, the
actual gatekeeper, is the automated test suite.

main

task002

TESTING

That’s why you need a solid test suite to implement useful task branches like it is for trunk-based
development and DevOps overall.

74 | One task - one branch

The Test Pyramid
Check out this article on The Practical Test Pyramid [https://martinfowler.com/articles/practical-test-
pyramid.html]. It is a concise explanation of the famous Test Pyramid:

Unit tests

Service tests

UI
tests

slower

faster

A simple rule of thumb: write as many unit tests as you can and as few UI tests as you can.

Want to learn why? I’m going to share our own experience on the matter.

Unit tests
Unit tests should be fast, reliable (unless you really write some messy ones), and capable of testing
everything. Yes, if you think you really need an integration test because "it can’t be tested with unit
tests," I bet you are wrong. I know I was.

Now, we create more unit tests than ever and less and less GUI and smokes. Of course, some are always
needed, but the fewer, the better.

Service/Integration tests
We call them smoke internally, but they are sort of integration tests.

We extended NUnit long ago and created PNUnit (parallel NUnit), and we use it to sync the launch of
client and server on different machines.

Tests are written in C# and automate the command line.

Our mistake: Each test takes between 4-15 seconds to run. Too slow. We didn’t realize it at the
beginning and created tons of them. Many are still in service.

Test slowness ends up creating the "new versions are an event" problem, which is one of the key ones to
solve when implementing true DevOps. Otherwise, new versions or releases are something painful that
the entire team will try to postpone. And it all ends up in long nights and weekends. Not the way to go.

Fortunately, smokes are stable and false positives are not common.

Automated tests passing on each task branch | 75

https://martinfowler.com/articles/practical-test-pyramid.html

UI tests
We also have a bunch of UI tests. They can detect UI issues and help avoid regressions.

In our case, they need to start the server, wait for it to be ready, and so on. And well, they are the root
of all evil.

I mean, unless you write them really, really well, they end up being fragile (the worst that can happen to
an automated test suite).

We rewrote many GUI tests over the years. This is how the whole thing evolved:

• First, we started with the "record and rerun" technique (offered by many vendors), which proved to
be a nightmare (auto-generated code ends up being a mess).

• Later, we moved to just writing code to create tests because, while more difficult to write at first (not
really, but you do need programmers for that, and well, we are programmers anyway, so not a big
deal for us), it ends up paying off because you have more maintainable tests that you can easily
refactor and adapt when the UI changes.

But, even with coded GUI tests, we were hit by long tests and the unavoidable issue of "control not
found" that comes with all UI Automation packages I know.

That’s why we ended up writing our own small framework for GUI tests, but that’s a whole story
[https://www.plasticscm.com/download/help/howwework] in itself.

Start small
If you are reading this and your team already has a solid test suite with great test coverage, then you are
all set.

If not, let me share a trick: start small. I’ve seen so many teams being discouraged by their total lack of
tests. "We’ll never get there," they thought. But, of course, you can’t pass from zero-tests to 10 thousand
unit-tests by stopping all development and just focusing on testing for months. That’s not realistic.
Business must go on. So, what can you do? Battle inertia. The easiest is to simply continue with zero
tests. Write one today, have a few in a week. Keep adding. In a month, you have a small number. In a
year, the code will be quite well tested. The alternative is to sit exactly where you are now in a year,
which I bet is not such a good choice.

Automated tests are a safety net
I like to think of tests as a safety net that gets thicker and thicker as you keep adding more.

The following picture shows what I’m trying to explain:

76 | One task - one branch

https://www.plasticscm.com/download/help/howwework

1. First, you have no tests, and all kinds of bugs go through.

2. Then you build your initial safety net. It is too wide, so it only catches massive issues. That’s good
though, at least you are sure the massive issues won’t happen again.

3. You keep adding tests to catch even smaller bugs.

4. At a certain point, your test-net is so thick only tiny bugs can escape ὤ�.

The "safety net" example also gives you a good idea for the strategy to follow: focus on catching big
issues first.

A couple of rules we follow:

• Every bugfix adds a test, so this bug doesn’t happen again.

• Every new feature adds new tests. Reviewers, in fact, reopen tasks if the new code is not tested.

Both techniques help even if you don’t have a test suite in place; they’ll help move things forward.

Every release is a release candidate
In "A finished task must be ready to be deployed", we saw how, as developers, we must be ready to say
goodbye to the task and let it fly on its own to release, without us doing any further work on it as soon
as we mark the task as done.

Well, this is because every single task merged to main must be ready to be released. The release
machine wouldn’t be ready for the DevOps league if new changesets on main are not really stable, really
prepared, or "wait, yes, but we need to make more checks because…".

This means that a situation as follows would be perfectly normal:

Every release is a release candidate | 77

BL129 -public

main

BL130 -public BL131 -public BL132 -public

For SaaS products, this would be desirable because your team will simply update the cloud software, and
users will immediately see improvements without any required upgrades.

There will be cases, though, where publishing every release won’t be that desirable because you don’t
want to run users crazy with 19 new releases every week. So, the solution is quite simple and obvious:
don’t make every release public.

BL129

main

BL130 BL131 BL132 -public

Extra testing – grouping releases
Finally, there will be cases where you need to pass an additional test suite before publishing. Again, t is
not ideal, but slow test suites or the need to run load tests for hours before deploying the new version
might force you to do that.

If that’s the case, the situation will look as follows:

main

attr:BL130 attr:BL131 attr:BL132attr:BL129

Release Suite

Teams can perfectly label each new build, but sometimes it is better to save labels for real versions ready
to deploy and use attributes for build numbers. We use this method ourselves when releasing Plastic.
Every new changeset in the main branch has a build number, but only real stable releases have labels.

As you can see, build BL132 is used to launch tests grouping the new tasks merged from 129 to 132.

While the test suite passes, new tasks can reach the main branch:

78 | One task - one branch

main

attr:BL130 attr:BL131 attr:BL132attr:BL129

Release Suite

attr:BL133

Then, after the release test suite passes, the new version is labeled:

BL132 -public
main

attr:BL130 attr:BL131 attr:BL132attr:BL129 attr:BL133 attr:BL134

Consider this a huge warning: This practice will create broken builds. The task test suite won’t be
complete enough because it requires a second test suite to pass, so the second one can detect issues
that prevent the new version from being released. If that happens, you are in a broken build. So you’ll
need a new task to fix it, and it must reach the main branch as quickly as possible to revert the broken
build status.

The situation, is not as bad as breaking the build with every task because your main branch might not be
good enough to go public for everyone. However, it can be still be deployed to smaller groups or even to
the internal development team, which is good for dogfooding.

Be selfish with tests and clean code
We can all talk for hours about how great having near-perfect test coverage, and pristine code is. It is
good for the project, for the business, and it is great to react fast to requirement changes. We all know
that.

Let me share a different point of view: be selfish.

• Keep your code clean just because every skeleton in the closet will come back and bite you. We’ve
experienced this many times over the years.

• Run tests just for your peace of mind. Do you want to be constantly interrupted with super urgent
stuff that needs to be fixed now? No? We don’t either. Tests keep you safe from interruptions
because the big, urgent things shouldn’t happen.

Trunk-based development
What exactly is trunk-based development, and how does it blend with task branches?

What is trunk-based development
It is a technique to ensure that all changes reach trunk quickly, and every change is correctly reviewed
and tested. You can find out more about it on Hammant’s super site [https://trunkbaseddevelopment.com].
Trunk is the main development line, "main" in Plastic jargon.

Be selfish with tests and clean code | 79

https://trunkbaseddevelopment.com

Trunk-based development is the foundation of "continuous delivery."

It requires continuous integration; changes get continuously merged into trunk as soon as they are
known to be good (peer-reviewed and tested with an automated test suite).

Trunk-based development is not the same as mainline development. Remember the old days with
everyone just doing checkins to the main branch? (SVN anyone?). No, it is not the same thing. Trunk is all
about making sure the build is stable, ready to be deployed. Nothing to do with the old mess.

Task branches blend well with Trunk-based
development
Before you cringe, trunk-based development is compatible with short-lived task branches.

I wouldn’t even call these branches "feature branches" at all because it might be misleading. A feature
can take a long time to implement, so the branch grows too old.

I prefer "task branches," which are sometimes used interchangeably, although the meaning is quite
different.

Tasks are short, or at least they should be. How short? 4h, 8h, ideally no longer than 16hours.

Features are longer than that, so we just split them up. Task branches are great for that purpose, and
they blend nicely with trunk-based development.

Why do I insist on using task branches instead of just
doing checkin?
Well, suppose you are working in a distributed environment. You can checkin locally and then push, can’t
you? After all, this ends up being a "local branch," and you have a place to checkin as frequently as you
need before hitting "main." You can do this with Plastic when you work distributed, of course.

Now, why should it be different if you are working centralized? You can create branches, checkin often
then set the branch as ready to be merged to main.

In both cases (distributed and centralized), short task branches bring lots of benefits:

• The task branch is the actual "change container." You are not tied to a "single checkin"; you can
checkin as often as you need. (I tell a story in my checkins, so reviewers can go changeset by
changeset following my train of thought instead of hitting the full diff. It is great for big refactors).

• You can easily review the code before it gets merged. It is a branch, after all. There is no need to
create other artifacts (like temporary checkins or send the diffs around to a code review system). Just
review the branch.

• The branch can be merged in a single step. If something goes wrong (build, tests, whatever), the
entire branch gets rejected.

80 | One task - one branch

How do task branches blend with
distributed development?
I didn’t mention distributed development so far. The reason is that all the practices described so far
apply equally to distributed and centralized development.

It doesn’t matter whether you create branches on your local repos or in the central one in Plastic. You
can benefit from task branches on both.

The only difference is that you’ll obviously have to push your local branch to the central repo if you are
working distributed. You can push as many times as you need; no worries if your CI system can take only
task branches marked as done. All our native CI integrations can do it: Jenkins, Bamboo, and TeamCity.

Automation, orchestration and
mergebots
I have made my point clear by now: task branches are great if they are supported by good automation.
You need good automated testing and a CI system in place.

You can implement DevOps + trunk-based development + task branches using Plastic and Jenkins, Plastic
and TeamCity [https://www.plasticscm.com/download/help/devopsteamcity] and Plastic and Bamboo
[https://www.plasticscm.com/download/help/devopsbamboo], or even integrate through the GitServer interface.

We wanted to make things easier for teams implementing Plastic, though. That’s why we added
mergebots. A mergebot is a piece of software that monitors your repos and trigger builds when certain
conditions are met. It merges the task branch first, creates a temporary shelf with the merge results (if
the branch merges cleanly), and then asks the CI system to build and test the shelf. If tests pass, the
mergebot will confirm the merge and label the result.

The mergebot can notify each step to the team using email, Slack, or even custom-created notification
plugs. It can also consider task status from issue trackers and make changes based on the actual merge
result and test phase.

The Plastic webadmin interface includes a DevOps section to configure and monitor mergebots.

Learn more about mergebots [https://www.plasticscm.com/download/help/hireamergebot].

What about GitFlow?
If you’ve never heard of GitFlow, you can skip this section entirely.

But, if you’re wondering why we prefer the task branches strategy better than GitFlow, then keep
reading.

GitFlow [https://nvie.com/posts/a-successful-git-branching-model/] was introduced back in 2010 and since then,
adopted by teams all over the world. It is about creating different long-living branches called master (it
would be main in our case), develop, and then release branches to articulate work.

I don’t like it because I think it is overdesigned for most teams. And I don’t mean it is good for teams

How do task branches blend with distributed development? | 81

https://www.plasticscm.com/download/help/devopsteamcity
https://www.plasticscm.com/download/help/devopsteamcity
https://www.plasticscm.com/download/help/devopsbamboo
https://www.plasticscm.com/download/help/hireamergebot
https://nvie.com/posts/a-successful-git-branching-model/

doing very complex things. You can develop the most complex software and stick to a much simpler
branch strategy.

• You don’t need a develop branch. Just merge to main! It’s much simpler.

• You don’t need release branches. Just merge to main and release/deploy from there. DevOps
changed my view here.

• GitFlow popularized feature branches, and feature branches are not the same as task branches. In
fact, they can be a problem most of the time because they tend to live far too long before being
merged back to main. In contrast, task branches are, by definition, super short-lived. The former
encourages mini big-bang integrations, while the latter is a perfect fit for continuous delivery.

Yes, there will be cases where you really need a more complex structure than plain trunk-based plus task
branches, but most of the time, they will serve you quite well.

How to learn more
There are a few resources that are a must to master branching:

• "Streamed Lines: Branching Patterns for Parallel Software Development" [http://www.bradapp.com/
acme/branching/branch-creation.html], by Appleton and Berczuk, the writers of the incredibly good
"Software Configuration Management Patterns" [http://scmpatterns.com].

• "Trunk Based Development" [https://trunkbaseddevelopment.com], by Paul Hammant. Trunk-based is a
great way to keep things simple, blends well with task branches, and it is what most teams use to
implement DevOps.

82 | One task - one branch

http://www.bradapp.com/acme/branching/branch-creation.html
http://scmpatterns.com
https://trunkbaseddevelopment.com

REPO LAYOUT STRATEGIES

How many repos should you create? When is it better to organize different reusable components into
separate repos? What is a monorepo? What are Xlinks? And what are submodules?

This chapter will answer all these questions and a few more, always sticking to a conceptual approach to
help you better understand the version control techniques and practices.

What is a repository?
A repository is the storage of versioned content.

Too theoretical?

Let’s try again. The database that contains all the versions of your files, plus the branches, the merges,
the changesets with their comments, labels, attributes, moves, and renames.

We make a key distinction between two conceptually different parts:

• Data: the actual bytes of each revision of each file. If you upload a foo.c, the actual content is the
data. If you upload a 3GB .mp4 intro video for a game, 3GB is the data.

• Metadata: file names, directory structure, comments, dates, authors, branches, merges between
branches, labels… Simply put, anything that is not data.

Repository is a general concept used by almost all version control systems. Git calls it repository too, and
in Perforce, it is formally known as depot, but repository is a valid synonym too. You’ll often find it written
as just repo for short.

Repository storage
It is not my intention to go under the hood and into the internals here, but just take a quick look into
how repos actually store. Since chances are you have a strong technical background, I’m sure you’ll
appreciate understanding how things work. (If not, feel free to skip this, I don’t want to bore you with
the gory details).

What is a repository? | 83

server

storage

Jet

RDBMS
SQL Server
SQL Server CE
MySQL
SQLite
Firebird Embedded
Firebird
Postgres
Oracle

We have two main types of storage in Plastic SCM. They are completely transparent outside the server. I
mean, when you are doing a checkin, or merging, or doing diffs, or even running a replica, you don’t
really care whether your server is storing repos in SQL Server or Jet. In fact, servers talking with each
other don’t care either. Client-server and server-server communication are totally independent of the
storage backend.

That being said, the two major storage types are:

• Jet. It is our own ad-hoc, heavily optimized storage. It was first released in late 2016 after years of
sticking to traditional database systems and avoiding reinventing the wheel at all costs. But, finally,
we admitted that having our own storage, specifically designed to deal with Plastic repos, would get
much better performance results. Today, Jet is the default backend for repo storage, both on tiny
single-user installations and our largest customers with terabytes in each repo and thousands of
concurrent users.

• Standard database systems. We support many of them, although the server is only optimized to
work with two for heavy load: MySQL and SQL Server. SQLite is good for single users working
distributed and for really small teams. We don’t recommend any of the others for big teams, not
because they can’t scale, but because we didn’t optimize the Plastic server to work with them.

If you want to learn more about the story of Jet and why we finally reinvented the wheel, read the story
of Jet [https://www.plasticscm.com/download/help/jetstory].

Number of repos and maximum size
There are no limits on the number of repos and maximum size of each repo in Plastic SCM, other than
what the physical disk limits impose.

• You can have as many repos as you need.

• Each repo can be as big as you need. We have customers with repos as big as 5TB.

One project, one repo
Let’s start simple. If you have one project, create one repo to host it.

There are teams with many different independent projects, something like this:

84 | Repo layout strategies

https://www.plasticscm.com/download/help/jetstory
https://www.plasticscm.com/download/help/jetstory

proj_01

proj_02

proj_03

proj_04

We have a customer with more than 3000 developers on the payroll, and their main server hosts more
than 2000 repositories. They have many small teams working mostly independently from each other on
different repositories. Most repos contain software deployed independently (sort of microservices) while
it evolves over the years.

Another corporation in a different industry has more than 4000 repositories on the main server. Not all
of them are live since many contain projects that were already finished and no longer evolving.

There is another one with more than 1000 developers, part in Europe, part in South America. They also
have more than 4000 repos. Most of them contain small projects developed by teams ranging from 2 to
20 developers. Each project is an application deployed independently to production, controlling a
different part of the business, or providing different interfaces to their stuff. They develop enterprise
software for their own business. Some applications have requirements to be deployed together, but
their repos stay independent, and they control those dependencies from their CI systems.

Not all our customers are so large. For example, we have teams with less than 10 developers who work
on projects for different customers and created several dozens of repos over the last 10 years.

What I’ve described so far were independent repositories. It doesn’t really matter how big or small they
are. They do not have dependencies on each other. It means they are quite easy to understand and
manage.

Xlinks: Reusable components
Things get more complicated when you need to deal with reusable components.

The following is a common scenario for teams developing games, although the pattern is general for
any reusable component.

game1

engine3dgame2

game3

All different games share a 3d engine evolved by the same or a separate team. It doesn’t make sense to
copy the same code in all games, of course, so the logical option is to separate it in its own repo and xlink
to it.

An Xlink is a Plastic artifact to link repositories. Think of it as a special symlink between repos. I’ll be
talking more about it later in different sections of this book. (You can also read our guide about Xlinks

Xlinks: Reusable components | 85

https://www.plasticscm.com/download/help/xlinks

[https://www.plasticscm.com/download/help/xlinks].)

The challenge with repositories and components is that things can quickly get complicated as you can
see below.

product01

product02

product03

libgui

libdb

libchat

Here we see three products all sharing the same set of components. The number of Xlinks to create
between them grows. From a conceptual perspective this can be a very perfect solution, as long as it
doesn’t become a nightmare to maintain.

Keep it simple - Don’t overdesign your
repo structure
Component repos and Xlinks are great tools, but Uncle Ben said: with great power comes great
responsibility.

The big risk is to start seeing components everywhere, start dividing the codebase into too many repos
too soon and end up in a big unmanageable mess.

This is something we have seen so many times over the years in all kinds of teams. They get excited
about isolating repositories and discovering components, creating a bigger problem than the original
tangled monolithic repo.

So, yes, you can have many different repos, but use them with care.

Monorepos – don’t divide and conquer
Monorepos have been gaining popularity over the past few years. Legends say
[https://trunkbaseddevelopment.com/monorepos] that Google hosts its entire gigantic codebase into a single
mega large repository.

Why on earth would they do that?

• Bend repository boundaries. The boundaries of a repo are strict. It means if you put something on
a repo, it is not easy to move it to a different one. Of course, you can always copy the files and

86 | Repo layout strategies

https://trunkbaseddevelopment.com/monorepos

checkin to a separate repo, but losing history and introducing the risk of duplication.

• Shared knowledge. If you split the overall project into pieces, many teams and individuals will just be
aware of the few parts they work on. They’ll never look into the rest of the repositories for something
they need, primarily because simple tools like searching and grepping won’t help them. Very likely,
this will end up in duplication of code and efforts.

• Easier to refactor. Suppose you have a component used by 30 different products. If you just
download the repo that contains this component, it won’t be safe to apply a rename to a public
method or class used externally without a big risk of breaking one of those 30 projects potentially
using it. If everything is on a single repo, you’ll have the 30 projects on disk, and the refactor will be
easier.

According to Paul Hammant in his great trunk-based development site [https://trunkbaseddevelopment.com],
Google, Facebook, Uber and Netflix use monorepos. And, when famous tech giants adopt a technique, it
gains some credibility.

Submodules
There is one more thing to add to the repo tool belt: submodules.

Submodules are a great way to organize repositories in hierarchies. In fact, the main practical advantage
they introduce is defining a namespace in your otherwise flat repository naming structure.

ci/teamcity

ci/jenkins

ci/bamboo

ci

As you can see in the figure, you can have a repository ci and then many child repositories ci/bamboo,
ci/Jenkins, with as many levels of nesting as you need.



Tip for teams using relational databases as storage

Although we are now primarily standardized on Jet, there was an advantage for large teams using
relational databases as storage. Submodules are stored into the same physical database as the
main repo they belong to. This is interesting when you need thousands of repos, and your IT
department complains about managing thousands of databases. Submodules are quite practical in
that circumstance.

Practical advice: Fantastic repos and
when to create them
After going through some of the basics, let’s see if I can give you some practical advice that helps you
structure your projects in Plastic SCM.

Submodules | 87

https://trunkbaseddevelopment.com
https://trunkbaseddevelopment.com

Keep it simple
This is a mantra in software development. Try to keep things as simple as possible. For example, ask
yourself several times if you really need to create a component repo.

Overdesign will normally bite you harder than a too simplistic approach.

Monorepos are fine
I have to admit that before reading about monorepos as a legit approach, I always thought putting
everything on the same repo was a little bit of a mess.

But, let me share how we structure our main repo to illustrate how we implemented monorepos
internally.

We work on one main product: Plastic SCM. But at the time of writing this book, we have two other
secondary products: SemanticMerge [http://www.semanticmerge.com/] and gmaster [https://gmaster.io/].

We manage the three on a single repo called codice, as you can see below:

codice

/01plastic

bin

build

install

src

server

client

gmaster

gmasterweb

semanticmerge

• SemanticMerge uses part of the code under client to take advantage of some of the text merge
algorithms in Plastic. Also, some of the actual semantic core is under client too, outside the
SemanticMerge directory because it is used by Plastic and Semantic.

• gmaster uses SemanticMerge entirely, including common parts shared with Plastic.

• Plastic itself uses semanticmerge.

88 | Repo layout strategies

http://www.semanticmerge.com/
https://gmaster.io/

We could have certainly structured it differently with Xlinks as follows:

codice

/01plastic

bin

build

install

src

server

client

gmaster

semanticmerge

semanticmerge

/

lib

gui

gmaster

/

gui

web

xlink

xlink

But since both gmaster and SemanticMerge require pieces inside 01plastic/src/client to build, the two
new repos wouldn’t build in isolation. We can admit that, they only build with mounted inside codice. But,
if that’s the case, what’s the point in isolating them? Plastic doesn’t really have repo size issues, so the
division would be quite artificial and impractical.

Another alternative would be to split the repositories differently, so both SemanticMerge and gmaster
can be built separately from the main codice repo. For example, a stricter separation in components
would be as follows:

codice

/01plastic

bin

build

install

src

server

client

gmaster

semanticmerge

semanticmerge

/

lib

gui

gmaster

/

xlink

xlink

libdiff

libdiff

/

core

libdiff

libdiff

gui

web

Practical advice: Fantastic repos and when to create them | 89

I marked web inside gmaster in green because this could also be an opportunity for another Xlinked
repo.

We can continue our splitting flurry, but the question is: does it really make sense? Plastic can certainly
cope with all those repos but, does it really make sense for the team?

In our case, the answer was no.

Everything was simpler with a single code repo. Even the website for gmaster is on the same repo
because this way, it is very easy to build the same REST API definition both in the client and the server
and refactor accordingly instead of splitting. It could be a good candidate for a different repo but, why?

I don’t mean it is good to have a big mess in the repo. We are super strict with directory and file naming,
and with what goes into each directory and so on, and we frequently reorganize directories when things
don’t look nice anymore. But a single repo serves us well.

Sometimes you need Xlinks
I explained my view about how important is to keep things simple, but of course, there are cases where
splitting and xlinking is really the best option.

How can we distinguish the scenarios?

It all depends on practical and organizational restrictions.

• Size. Can your organization afford everyone on the same big repo or is it too large that it doesn’t
even fit on the developer machines? Sometimes, especially in game dev, we find repos so big that a
single full working copy would be several terabytes. They could cloak the repos to only download
parts of it, but splitting sometimes is easier to understand to avoid issues.

• Historical reasons. Some teams already had many different repos in their previous version control.
They are used to that, their build files are ready for that, and they want to minimize the impact when
switching to Plastic.

• Privacy. Several teams share the same 3d engine, but each develops a different game and is not
allowed to see what others are doing. They all contribute to the engine with changes, and they can
all benefit from improvements, but seeing each other’s code is not doable. The same scenario
applies to different companies contributing to a bigger overall project, where each of them is only
allowed to work and see certain parts.

Conclusion
Plastic SCM repositories provide many options to model your project structure.

Our advice is: try to keep it as simple as possible. Try the monorepos, they are widely accepted by the
industry, and they can be shockingly simpler than other more componentized alternatives.

90 | Repo layout strategies

CENTRALIZED & DISTRIBUTED

Should you work centralized or distributed? Which mode is better? Is it possible to combine both? What
would be the advantages? What is the difference between an on-premises server and a Cloud solution?
What are proxy servers?

These are some of the topics we’ll be discussing in this chapter.

Centralized and distributed flavors and
layouts

What is distributed and centralized
If you’re familiar with Git and Perforce or SVN, you know what distributed vs. centralized means. If not,
check the following explanation.

Centralized means you directly checkin to a repository (repo) located in a central server, typically on-
premises.

wk
checkin

update

Subversion, TFS, and Perforce are typical examples of the centralized workflow. Plastic can work in this
mode too.

Distributed means you always checkin to a local repo in your machine, then push your changes to a
remote repo on a server.

wk

push

pull

Distributed is great because every checkin is local, so it is super-fast (no network latency potentially
biting you). The downside is that you need two operations to reach the central repo: checkin and then

Centralized and distributed flavors and layouts | 91

push. This is not a big issue, of course, considering the benefits, but our experience tells us that it is like
torture for certain profiles. In video games, for instance, artists hate push and pull. Checkin and done is
more than enough for them.

Running a local server
If you have a Git background, you’re probably thinking: "yes, but Git does distributed without a
local server."

And you’re right. We need it because, traditionally, our server start time (while super-fast) was not
fast enough to have zero impact if started and stopped with each command you run.

With Jet as the storage backend, we could probably go in that direction, but this is something we
never really targeted because running a local server doesn’t have a real negative impact.

There are other things this design allows that have been out of Git’s scope for a while. For
example, in Git, a repo and a working copy are heavily tied together.

Until very recently, it wasn’t possible to have several working copies connected to the same repo.

This has always been possible in Plastic. It is also possible to directly connect a workspace to a
remote repo, something still out of Git’s scope and the source of many issues with large projects.

Plastic can do centralized and distributed
We chose the name Plastic because we wanted to be flexible (yes, there are rigid plastics ὠ�). So, Plastic
can be as fully distributed as Git is or work fully centralized.

To work distributed, we need to provide local repos, and that’s why Plastic runs a super lightweight local
server. It is the same codebase that can scale up to manage thousands of concurrent users and millions
of requests per day but tuned down to be as quiet and resource-constrained as possible.

Is distributed better for branching and merging?
There is some confusion about this that I think is worth covering. Some developers wrongly believe that
you need a distributed version control to do proper branching and merging.

That’s why only a few version controls were good with branches before 2005. That was the year when
Plastic SCM, Git, and Mercurial were born. All of them are distributed, and when Git got worldwide
popularity, everyone thought good branching was a DVCS thing.

I’m a version control geek, so I must say that while SVN, CVS, Visual Source Safe, Perforce, and a few
others were truly weak with branches and merges, Clearcase had a pretty high bar. It was very good, but
it was hard to install, extremely expensive, and after the IBM acquisition, it got more bad press than
good. But it was one of the strongest systems ever made.

Getting back to the point, you can do super-strong branching and merging with Plastic while working
centralized.

92 | Centralized & distributed

On-premises and Cloud
You can install your own Plastic SCM server at the office. This will be an on-premises server. This might
sound obvious, but I think it is worth making it crystal clear, especially for non-native English speakers
ὤ�.

Then, we offer a service to host repositories in the cloud [https://www.plasticscm.com/plasticscm-cloud-edition],
managed by us, so your team is freed from the sysadmin burden. So that’s the Cloud option.

What impact is there when choosing Plastic Cloud vs. on-premises on the distributed/centralized
strategy?

None! You can work perfectly centralized or distributed with Cloud or on-premises. The only downside
you might have is the added network latency if you compare Cloud with a server hosted in your office.

wk

checkin/update

wk

push/pull

Mix distributed, centralized and Cloud
Something you must keep in mind when designing the actual version control layout for your company is
that Plastic gives you a range of choices. You don’t have to force the entire team to stick to a single
pattern. Some can work centralized, some distributed, some connected to the cloud, and you can even
create multi-site setups.

The following diagram is an example of a possible setup:

wk

push

pull

wk

checkin

update

push/pull

wk

Boecillo

Home

wk

Home

push/pull

checkin/update

• There is a co-located team with an on-premises server where one team member is doing direct

Centralized and distributed flavors and layouts | 93

https://www.plasticscm.com/plasticscm-cloud-edition

checkins while the other prefers to work distributed.

• The on-premises server push/pulls to the cloud. Cloud can be used as a backup of the central site or
simply as a better way to give access to external contributors to the project.

• Then two team members working from home: one using distributed, the other sticking to direct
checkin.

Multi-site
Multi-site stands for having multiple on-site servers connected through replicas. (Important: We call
replica to push/pull, nothing new.)

The scenario can be as follows:

wk

push

pull

wk

checkin

update

push/pull

internet

Boecillo

wk

push

pull

wk

London

• Two teams.

• Each has its on-premises server.

• Team members at both sites checkin locally or distributed but benefit from the speed of a close on-
premises server.

• Servers push/pull between each other to keep fully or partially in sync.

Multi-site was an essential concept before distributed version controls were widely adopted, as almost
the only way to connect different sites.

Is multi-site still relevant nowadays?

• In reality, it is just a different form of distributed.

• Many teams can benefit from a super simple workflow sticking to direct checkin to a local server.

• Different servers are kept in sync using replica (push/pull) triggered by a script that can run
continuously, or just a few times a day, depending the team’s needs.

• Of course, if every team member works distributed, there wouldn’t be a big need for on-premises
servers on each site, except if you need to run some CI tools locally.

• Cloud can be added to the previous picture as a third site that can act as a single source of truth.

• Many other sites can be added to the picture.

• The on-premises servers are connected through the internet. They can have an open SSL port or
bypass proxies using Plastic Tube, our own P2P protocol. Of course, any commercial VPN or tunnel
software can be used to create the virtual link between servers.

94 | Centralized & distributed

Recommended layout
My recommended layout is the same I made for branching patterns and repo layouts: Try to keep things
simple, from an IT perspective and for the team members using Plastic daily.

What I mean by this is:

• If all your developers can use distributed, there is no big reason not to go for it. Use a Cloud server
as a single source of truth, and you are done.

• Do you really need an on-premises server? If not, stick to a Cloud one. If you really need it, then yes,
go for it. It won’t require much maintenance, but always more than if you don’t have one.

• You have multiple teams on multiple sites. Can they all stick to distributed? Then, maybe you are
good with a single central server, and they all push-pull to it. If not, then it is good to go for multiple
sites and servers on each.

In short, Plastic gives you all the flexibility, but it doesn’t mean you have to use everything ὤ�.

Proxy / cache server
You have another choice to connect distant sites: the cache server, a.k.a. proxy server.

It is a straightforward piece of software; it caches data (not metadata), so it’s not downloaded from the
distant server each time, saving network bandwidth and time.

The following diagram explains how the Plastic clients (GUI or command line) and a proxy/cache server
work:

• Checkin goes directly to the central server, so the proxy doesn’t speed up the operation.

• Update tries to download the data from the cache server. If the data is not there, the cache server
will download it from the central server and cache it for the next request.

cache server

checkin

update

As you can see, the functionality is straightforward.

The typical scenario is a co-located team that usually works with big files and is connected to a distant
server.

Centralized and distributed flavors and layouts | 95

wk

checkin

update

internet

Boecillo Boston

cache server

The team at Boecillo will benefit from faster updates (data downloads) if they have a proxy on-site
because data won’t be downloaded all the time from Boston.

The scenario works well as long as the network connection works as expected. Proxies are a
performance improvement, not a solution for multi-site. It is important to keep this in mind when
you design your Plastic server infrastructure.

cache server
main server

internet

The downside with proxies is that if the network connection between the cache server and the central
server goes down, the users won’t operate normally. For example, they won’t be able to checkin
anymore, and updates will also fail because only data is cached, not metadata.

cache server
main server

internet

Having your repos on your machine or your on-site server for the entire team (fully distributed for the
first option, multi-site for the second) allows you to have a solution resistant to network failures. The
team can continue working even if the connection to the central server goes down.

96 | Centralized & distributed

server
main server

internet

If distributed and push/pull operation (a.k.a. replica) is superior to proxies, why do we support them?

• A proxy is just a way to support centralized operations with some network optimization. For example,
you might have a distant team that refuses to push/pull because of whatever restriction. This is very
common with non-developers: They prefer to only checkin, and dislike dealing with an extra
push/pull. A proxy might be a good solution if nobody is on their site capable of managing a server.

• If you need to enforce non-concurrent operation on certain files (locking), you need to stick to
centralized, and proxies can help distant teams.

• Network performance: We have seen heavy load scenarios where customers decided to install a
Plastic cache server on different network sections to decrease the network usage of the main server.
All happening inside the same building.

In short, we strongly recommend using distributed if possible. Still, proxies are always an option when
replicas are not possible.

It is important to note that some teams, especially those coming from Perforce, tend to prefer proxies
over distributed because that is what their previous version control provided as a multi-site solution. So,
please, keep in mind the options and remember Plastic can do distributed when needed.

The story of why we developed the cache server
Proxies are well-known in the version control world. For example, Perforce implements something
similar (more functional than the Plastic proxies because they try to solve some things we do with
distributed). If I remember correctly, even Clearcase had a solution along the same lines.

But, we developed the original cache server to improve end-to-end performance in a massive
team of 1000+ developers in South Korea working on a single huge codebase. The problem was
that the traffic on the central server was so high that the network link was saturated. Also, most of
the traffic was data being downloaded.

So, with their help, we decided to implement small caches on different network sections to reduce
the traffic to the central server. And it worked.

The exciting thing is that all of this happened inside a single building! We were not targeting multi-
site scenarios. We had replicas for that.

Centralized and distributed flavors and layouts | 97

What’s next for proxies
We have been tinkering with an idea: Have a small proxy/cache on each computer connected to
Plastic Cloud, so it caches data when working directly to cloud to avoid redownloading the same
data on branch switches.

It won’t be like the actual proxy server in terms of deployment since it will have to be automatic
and have zero maintenance. It will have at least a recently used list of blobs to auto-remove the
least used.

The goal is to dramatically speed up updates by removing the chance to download a file from a
distant server more than once.

How replication works - push/pull
After looking at what working distributed is and the layouts supported by Plastic in combining
distributed, centralized, and even implementing multi-site, let’s look at how distributed works and what
the push and pull operations do.

Globally unique changeset numbers
When you look in a Plastic repository, you’ll see that changesets are numbered as follows:

0 2

main

1

A changeset zero is automatically created together with the main branch when you create a new repo.

Then, as soon as your checkin changes, there will be other changesets, in my example, changeset 1 and
2.

But, these changeset numbers are local to the repository. I mean, they are good if you work centralized,
they are meaningful and easy to remember numbers.

But as soon as you work distributed, local numbers are no longer suitable, and you need Globally
Unique IDentifiers – GUIDs.

So, if you look carefully in your Plastic SCM Branch Explorer, you’ll see there is always a GUID number for
each changeset.

98 | Centralized & distributed

Thus, changesets are identified by two numbers: locally by numbers and globally by a GUID.

0 2

main

1

3eef3b52-a248-45d1-9e7f-974193c7fa61

fc113a1e-a870-42d3-b527-f136f6c662ce

0497ef04-4c81-4090-8458-649885400c84

The GUID is a long identifier, so in short, I’ll be referring to it in a shortened way just by its first section.
This shorter section is not guaranteed to be unique, but it is usually good enough to refer to it in
examples. And chances are, you can even use it to refer to a changeset globally to a team member since
chances of a collision are small.

With that in mind, the previous diagram can be simplified as follows:

0 2

main

1

3eef3b52fc113a1e0497ef04

How replication works - push/pull | 99

How push works
A push takes changes from one repository and pushes them to a different one. The repos can be on the
same server, but they are typically on separate ones.

Let’s follow a simple example step-by-step, so we can ensure you get a solid understanding of how it
works.

First, I start with a repo created on a server called juno. Fun fact juno used to be our on-premises main
server years ago ὤ�. By the way, instead of juno, it could be a local server, something like quake@local for
Cloud Edition users, or quake@localhost:8087 if you have a local Team server on your machine. The actual
operation will be the same.

As you can see, my quake repo has three changesets.

There is a different repo hosted in my Cloud organization: quake@gamecorp@cloud. Again, instead of a
hosted repo in Plastic Cloud, it could be something like quake@skull:9095 for an on-premises server.

Notice how the changeset 0 has the same GUID in both repos. This is intentional. When we designed
Plastic, we wanted it so that all repos had common ground so they could all replicate each other - more
on this in a second.

0 2

main

1

3eef3b52fc113a1e0497ef04

juno:9095quake @ gamecorp@cloudquake @

0

main

0497ef04

Now, what if you now decide to push from main@quake@juno:9095 into quake@gamecorp@cloud?

The first thing Plastic has to do is to determine what needs to be pushed.

To do that, server juno:9095 connects to gamecorp@cloud and retrieves its changesets on the main branch.
Then, it finds there is a common point: the changeset 0, and that the two "children" of 0 —`fc113a1e` and
3eef3b52— are the ones that need to be pushed to complete the replica.

0 2

main

1

3eef3b52fc113a1e0497ef04

juno:9095quake @ gamecorp@cloudquake @

0

main

0497ef04

Then, the source server juno:9095 (source of the push) will package the two changesets and send them to
gamecorp@cloud, together with its corresponding data. I mean, it will send all the needed data and
metadata.

Once the operation completes, the situation will be as follows:

100 | Centralized & distributed

0 2

main

1

3eef3b52fc113a1e0497ef04

juno:9095quake @ gamecorp@cloudquake @

0 2

main

1

3eef3b52fc113a1e0497ef04

At this point, the two repos will be identical.

Now, what happens if you checkin a new change to quake@juno:9095 and want to push again? Well, the
same calculation will happen again:

0

main

1

fc113a1e0497ef04

juno:9095quake @ gamecorp@cloudquake @

0 2

main

1

3eef3b52fc113a1e0497ef04

2

3eef3b52

3

5c1e3272

This time, the server juno:9095 determines that 5c1e3272 will be the changeset that needs to be pushed
because it found that the remote server already has 3eef3b52.

And this is how push works. It’s very straightforward.

Why normal changeset numbers don’t always match,
and do we need GUIDs?
Let me go back again to the changeset numbering problem and the GUIDs. Let’s start with the example
above: There is a new change 5c1e3272 to push between juno and gamecorp@cloud. But, a new branch was
created in gamecorp@cloud.

Note that I’m starting to color changesets based on their origin: One color for the ones created at juno, a
different one for those originally created at gamecorp@cloud.

0

main

1

fc113a1e0497ef04

juno:9095quake @ gamecorp@cloudquake @

0 2

main

1

fc113a1e0497ef04

2

3eef3b52

3

5c1e3272

3

task1273

ea808d77

3eef3b52

How replication works - push/pull | 101

The new changeset on branch task1273 at gamecorp@cloud has changeset number 3. It collides with
changeset 3 created on juno, although they are obviously different.

Locally, each repo tries to follow a numbering sequence, and that’s why numbers can collide.

Check how the two repos look like once the new push operation is completed:

0

main

1

fc113a1e0497ef04

juno:9095quake @ gamecorp@cloudquake @

0 2

main

1

fc113a1e0497ef04

2

3eef3b52

3

5c1e3272

3

task1273

ea808d77

3eef3b52

4

5c1e3272

Changeset 5c1e3272 is local number 3 in juno, but number 4 in gamecorp@cloud.

That’s why you can only trust changeset numbers locally but need to use GUIDs if you work distributed.

I hope this explanation makes it obvious why we use the two identifiers.

Push vs. pull
I’m going to explain the difference between a push and a pull operation in Plastic.

The obvious is true: Push means sending changes from A to B. Pull is bringing changes from B to A.

In Plastic, you can push/pull repos hosted locally and repos hosted on different servers.

The following is a typical push/pull schema between a local repo (hosted on the server called local) and
an on-premises server called juno.

wk

push

pull

localquake @ juno:9095quake @

When you ask your local server to push to juno, what happens is something as follows:

102 | Centralized & distributed

push

you ask local to push
main@quake to juno

juno:9095quake @localquake @

1

2

Note for Git users on GUIDs vs. SHAs
If you have a Git background, you might question why we don’t copy Git and keep a single
identifier.

The answer is a short story that goes back to our beginning. When we started, our goal was to
replace the Subversions and Clearcases of the world, and Git didn’t even exist when the first
designs of Plastic were put together. In all version controls before Git, changeset numbers were
readable. Of course, a GUID would be better in terms of implementation, but we didn’t want to
annoy our users by asking them to handle such a long set of numbers and letters.

Years later, Git became the most extended version control, and developers accepted long SHAs as
identifiers happily. (Well, probably not so happy, but they had to accept it).

Long unreadable identifiers became normal, so Plastic GUIDs were now perfectly fine for
everyone.

But, we still kept the local human-readable changeset ids. One reason was backward compatibility.
The other was that many teams were not using distributed daily, so they were much happier with
their good-old sequences.

Your Plastic client connects to the local server and asks it to communicate with juno and negotiate the
push. Then the steps described in how push works happen.

Now, when you pull from juno, you ask the local server to get changes from juno. Again, your client
connects to the local server, then the local server connects to juno and negotiates the pull. The pull is
quite similar to the push, but instead of sending changes, it simply performs a negotiation to download
data and metadata.

How replication works - push/pull | 103

pulls

you ask local to pull
main@quake from juno

juno:9095quake @localquake @

1

2

But, remember that in Plastic, you can perform push and pull operations not only from local repos, like
in Git, but also connect to remote repos.

Thus, the following diagram shows a pull operation pulling changes from juno into a new server called
skull.

pulls

you ask skull to pull
main@quake from juno

juno:9095quake @skullquake @

1

2

You first ask skull to pull from juno. Then skull connects to juno, negotiates the pull, and then
downloads the metadata and the corresponding data.

Think for a moment about what I described. Unlike what happens in Git, you can trigger replicas from
any server, not only from your local repos.

Then, in Plastic, you can achieve the same behavior in different ways: Pull from juno into skull is
equivalent to a push from juno to skull.

The following diagrams illustrate the equivalent scenarios and highlight a key point: The operations are
equivalent but not the required network connections.

When you pull from juno into skull, skull is the one connecting to juno. The diagram shows the direction
of the connection and how the data is transferred.

104 | Centralized & distributed

you ask skull to pull
main@quake from juno

juno:9095quake @skullquake @

you ask juno to push
main@quake to skull

pull

skull => juno. skull needs to connect to juno

juno => skull. juno needs to connect to skull

juno:9095quake @skullquake @

push

Pull skull <- juno is equivalent to push juno -> skull
but the network connections required are different

The important thing to note here is that while the two previous operations are equivalent in data
transfer, the required network connections are different. skull might be able to connect to juno, but the
opposite might not be true, so the second alternative, pushing from juno to skull might be forbidden
due to network restrictions.

The following diagram explores a new equivalence. A push from skull to juno is the same as a pull made
by juno connecting to skull. But again, the network connections are different and the restrictions might
disallow some combinations.

How replication works - push/pull | 105

Push skull -> juno is equivalent to pull juno <- skull,
but the network connections required are different

you ask skull to push
main@quake to juno

juno:9095quake @skullquake @

you ask juno to pull
main@quake from skull

push

skull => juno. skull needs to connect to juno

juno => skull. juno needs to connect to skull

juno:9095quake @skullquake @

pull

Hopefully I made this crystal clear. It is not difficult at all, but we often find users confused about the
equivalences of push and pull between servers. That’s why I created a new summary diagram:

106 | Centralized & distributed

junoskull

pull from juno to skull

connection

junoskull

connection

push juno to skull

junoskull

push skull to juno

connection

junoskull

connection

pull from skull to juno

=

=
Finally, for the users that are going to use Cloud Edition or Cloud extension, look at the following:

cloudlocal

pull from cloud

connection

cloudlocal

connection

push cloud to local

cloudlocal

push to cloud

connection

cloudlocal

connection

pull from local

• You can pull changes from the Cloud, but the Cloud can’t connect to your local server to push
changes directly to your local repo.

• You can push from your local server to Cloud, but your local repo won’t be accessible from cloud, so
it can’t pull from you.

Firewall configuration
The direction of the required connections described above is essential for the firewall
configurations. Normally, local repos won’t be accessible for security reasons, so they’ll need to
push/pull from a remote repo, but a remote repo won’t be able to push/pull from them.

The firewall configuration becomes important in multi-site scenarios, depending on the types of
operations you need to achieve.

It is not difficult to set up, but keep in mind the diagrams in the previous section, so you have a
crystal clear understanding of the connections required.

This might be obvious for most of you, but I wanted to ensure that it doesn’t end up becoming a
source of frustration ὤ�.

How replication works - push/pull | 107

Handling concurrent changes on
replicated repos
All the examples I described so far were pretty easy because our imaginary developers were kind
enough to only make changes on one of the replicated repos at a time, so there weren’t concurrent
changes, so no need for conflict resolution.

Concurrent changesets on different repos
Now, it’s time to find out how to handle changes that happen concurrently. Let’s start with the following
scenario. We initially started with a quake repo in juno that we pushed to gamecorp@cloud. Now,
developers created changesets concurrently on both sides. As you can see, there is a new changeset
5c1e3272 on quake@juno and two new ones at gamecorp@cloud.

0

main

1

fc113a1e0497ef04

juno:9095quake @ gamecorp@cloudquake @

0 2

main

1

fc113a1e0497ef04

2

3eef3b52

3

5c1e3272 3eef3b52

3

89e9198d

4

fb4f9ebc

changeset created in juno

changeset created in cloud

newly created cset

If you try to push from juno to cloud now, Plastic will complain, saying it can’t complete the push because
it would create a multi-head on destination.

What in the world is a multi-head?

Multi-head explained
If the push were allowed, your cloud repo would end up like this:

main

5c1e3272

89e9198d fb4f9ebc

Where both fb4f9ebc and 5c1e3272 would be heads. If that happens, which would be the changeset at
the head of the branch? What would be downloaded when someone tries to update from main? Which

108 | Centralized & distributed

changeset would be the selected one?

That’s why Plastic prevents the creation of multi-heads on push because it asks you to fix that situation
in your source repo before you push.

Use pull to resolve concurrent changes on your repo
That’s why you will need to pull from Cloud before pushing your changes. Once you pull, the repo at juno
will be as follows:

0

main

1

fc113a1e0497ef04

juno:9095quake @

2 3

5c1e3272

4

89e9198d

5

fb4f9ebc

3eef3b52

The two changesets created on Cloud will be downloaded and linked correctly. 89e9198d as a child of
3eef3b52.

The problem is that you are again in a multi-head scenario. In reality, the old head cset number 3
(5c1e3272) will still be the official head of the branch main at juno, but if you now try to push to Cloud,
Plastic won’t let you complete the operation, warning you that you have two heads.

The update will still work correctly downloading cset 3.


Note on cset numbering

You can see how local changeset numbers (the integers) don’t preserve the original numbering. For
example, 89e9198d was number 3 on Cloud but it is renumbered as 4 in juno. What stays constant is
the GUID.

What is the solution to this situation? We need to merge 3 and 5 to create a new changeset that will be
the single head of main on juno, and then we’ll be allowed to push.

The figure shows how the new changeset b2667591 combines the two old heads and creates a unified
head. Now the branch is ready to be pushed to Cloud.

Handling concurrent changes on replicated repos | 109

0

main

1

fc113a1e0497ef04

juno:9095quake @

2 3

5c1e3272

4

89e9198d

5

fb4f9ebc

3eef3b52

6

b2667591

Once the push to Cloud is complete, the result will be as follows:

gamecorp@cloudquake @

0 2

main

1

fc113a1e0497ef04

3

89e9198d

4

fb4f9ebc

5

5c1e3272

6

b2667591

3eef3b52

As you can see, the final result, changeset b2667591, means that at this point, the two repositories are
equivalent, although their evolution was different.


I drew the Branch Explorer differently on Cloud compared to juno to explain how it works. But, the
Branch Explorer in the GUI will always place the changeset that is head of the branch on the
principal subbranch. The real diagram will be the same on both Cloud and juno: The one I drew for
juno above.


We also introduced the concept of subbranches: They are like branches inside a branch. In reality,
changesets form "trees", and while we expect a branch to be just a line, it can be a tree on its own.

110 | Centralized & distributed

Sources of truth in distributed
development

Single source of truth
When you work with a single central server, it is obvious which one is the source of truth: The repos on
the server. Even if everybody has their repo with a clone or a partial replica of one of the repo and work
in push/pull, everyone knows where the master is.

Plastic Cloud

internet

wk

Source of Truth

This is the model that most of the DVCS follow. This is what GitHub is all about: A central solution for a
distributed version control (beyond many other things like an incredible social network for
programmers).

Now, if we go for a slightly more complex deployment, with several sites collaborating, is it still easy to
know where the source of truth is?

Sources of truth in distributed development | 111

London
Plastic Cloud

internet

wk

wk

Riga

wk
wk

In this scenario, while there are two sites with their servers, it might be easy to propose the Cloud as the
rendezvous point where all changesets and branches are pushed. It might ideally be the single source of
truth.

Shared sources of truth
Now, what if we remove Cloud from the picture in the previous scenario? The result would be as follows:

112 | Centralized & distributed

London

wk

wk

Riga

wk
wk

internet

Now, it is unclear which one is the leader and which one is the follower.


I’m using a multi-site naming convention, naming my servers as London and Riga, which implicitly
says they are main servers on two different sites. But the entire reasoning stays true if instead of
London and Riga, they are your local and Cloud, or maybe your local and your team’s on-premises
central server. And even your repo and your colleague’s repo.

Of course, it can be immediately resolved by a company-wide agreement: Riga is the main server,
everything must be pushed to Riga. This doesn’t happen often by consensus but due to historical
reasons: The original site rules.

The alternative is shared ownership of the truth which can end up being a very good solution too: London
and Riga can share the main versions, but there is probably no need for both to contain all the task
branches created at each site. Each one can be the owner of certain repos. But let’s focus on a single
one: How is it possible for them to collaborate without both sides being some perfect mirror of the
other?

Look at the following diagram:

Sources of truth in distributed development | 113

t5t4t0 t1 t2 t3

main

londoncore @ rigacore @

main

task100

task102 task104

changeset created in riga

changeset created in london

89e9198d 89e9198d 5c1e3272

t0 t1 t2 t3

task103

fb4f9ebc 5c1e3272 fb4f9ebc

time London Riga

t0 The initial changeset was created on t-zero in London
and later pushed to Riga.

t1 One developer starts working on task100, and a
second one on task102.

First changeset of task103.

t2 Second changeset of task100 and task102.

task100 is merged to main.

Second changeset of task103

t3 task102 is finished and merged to main task103 is finished.

t4 main pushed to Riga Changesets fbrf9ebc and 5c1e3272 are pushed by
London and appear at t2 and t3 (when they were
originally created)

task104 is finished

task103 is merged to main ⇒ merged with the
changes coming from London.

t5 task104 merged to main, and a new label created ⇒
new release.

What you can see from the example is:

• Riga is the main site where new versions are created. That’s why London pushes main to Riga once
branches are merged.

• It is too complicated to create releases for the same repo at two sites for practical reasons: Versions
could collide. I mean, it is doable with some coordination to create new version numbers. Still, it
would probably be a little impractical (or at least a good topic worth further discussion).

• London has some branch testing in place to decide if a branch is ready to be merged.

I was super careful to merge branches in Riga only after the changes from London were received. This is
not realistic, but I did it to keep the scenario simple. Do you see what would have happened otherwise?
If new changes were on main in Riga in t2, for instance, then London would have required a pull and
merge (and subbranch) before pushing. Not hard, but it would be more complex than the scenario I
drew.

114 | Centralized & distributed

Now, what happens in London once a new version is created in Riga? It just needs to pull main:

t5t4

main

londoncore @

task100

task102

89e9198d

t0 t1 t2 t3

fb4f9ebc 5c1e3272

There are a few interesting takeaways here:

• The core repos at London and Riga are equivalent, although they are not exact clones. I mean, the
newly labeled changeset at both sites is a snapshot of the same project tree. You can create two
workspaces, switch each to the same changeset on the two different repos, and they will contain the
same content.

• But, the two repos are not exact clones because they do not contain the same branches. task100 and
task102 are missing in Riga. Yes, their resulting changes are there in main, but the branches are not
there. Likewise, task103 and task104 are not in London.

Our recommended option – single source of truth and
not exact clones
I’ve introduced a couple of choices and the concept of different repos not having to be exact clones. Now
I’m going to share what we think makes the most sense.

To me, the previous scenario would have been much simpler this way:

Sources of truth in distributed development | 115

t5t4t0 t1 t2 t3

main

londoncore @ rigacore @

main

task100

task102
task104

changeset created in riga

changeset created in london

89e9198d

t0 t1 t2 t3

task103

task102

task100

89e9198d f1b7e490 c486022b c486022b 1dc0c8d1

t6

The workflow is not very simple:

• London never merges branches to main. It can create as many task branches as needed, but they will
be pushed to Riga once they are finished (or as many times as required during the process, no need
to delay the push until the task is completed).

• Finally, all branches are at Riga as if they were created there locally (Plastic always keeps track of
where each changeset was created). The following screenshot shows a changeset in our repo
codice@skull where its replication source (where it was pulled from) is a different server. As you can
see, Plastic keeps track of that. Among other more important tracking issues, this info lets you color
the changesets in the Branch Explorer depending on their origin.

• Riga is the one doing all merges. It makes much sense because this way you have a CI system in
place just monitoring the core repo at Riga.

• The decision to create a new version happens based on the info in core@riga, which significantly
simplifies things. Whether you are using a mergebot or triggering new versions manually, having
this single source of truth makes things simpler.

• As the container of the entire project Riga, is the key one to backup and protect in terms of data loss.

116 | Centralized & distributed

Let’s now see what happens to London once the new version is created: It can pull main from Riga to get
the new version, and merges of the task100 and task102 branches. Notice how the other branches
task103 and task104, do not need to be pulled from Riga at all, and the main branch will still be consistent
and equivalent to main@core@riga.

t5t4

main

londoncore @

task100

task102

changeset created in riga

changeset created in london

89e9198d

t0 t1 t2 t3

f1b7e490 c486022b c486022b 1dc0c8d1

t6

This scenario I just described can happen in a multi-site situation like the one I also described before.
But it will also be extremely common with developers working distributed in their repos. Let me explain:

• As a project contributor, you pull main from Riga. No need to download the complete history of the
project. It would consume much more disk space and time.

• You will create as many branches as you want locally. Usually, they’ll be your task branches.

• You will push your branches back to Riga as often as you need once you have finished your work.
Most likely, you’ll mark your finished task branch with an attribute that will also be replicated to Riga.

• You’ll regularly pull main again to get newer versions and start your new tasks from there.

• Finally, your repo will contain much fewer branches than Riga, but that’s not an issue at all.



Something essential to keep in mind is that if your repo doesn’t have all the branches, it doesn’t
have the entire merge tracking. What does this mean? Well, you are safe to merge between
branches you created, but if your repo is incomplete in terms of history, it might get different merge
results than if the merge is performed in Riga, where all the branches are present. I’ll cover this in
greater detail at "Merge tracking".

Sources of truth in distributed development | 117

Exact clones
What if you need to have two repos that are exact clones of each other? Is this achievable? And, I mean,
identical clones, not just equivalent results, as I mentioned a few times above.

As soon as developers work concurrently on two repos, there is no guarantee to have them as exact
clones all the time. They’ll eventually be consistent clones at the instant when all changesets are replicated
to both sites, and concurrent changes are merged and the results of the merges propagated. See what I
mean? If you can stop working on both sides and just allow work to resolve conflicts on branches, then
eventually the repos will be exact clones. But, since development typically never stops, then this eventual
consistency tends to be delayed. It is not a big problem, as long as you’re aware of it.

There is an easier way to get exact clones without dealing with concurrent changes: Keep one of the
repos read-only except for replicas from the source repo. Suppose no actual development happens on
the destination repo. In that case, you can guarantee that they are exact clones, at least until the
changeset that was just replicated into the destination.

This is very good if you need a failover repo (or set of repos) on a different server that you can switch to
if something goes wrong on the main one or use it as a backup.

Replicas can be fully automated without any manual intervention. If development happens at both
repos, then there will be chances of manual conflict resolution during merges. On the other hand, if
changes only happen on one side, there will never be a need for manual intervention, and replicas can
be easily scripted. The replicas can be launched by a trigger each time a new changeset is created on the
source repo, or periodically every few minutes or hours, depending on your needs.

Partial replicas
All replicas in Plastic are partial. When you replicate a branch in Plastic, you replicate just this branch, not
the entire repo, unless you loop through all of them or create a sync view and push/pull the entire
branch list.

Look at the following example:

118 | Centralized & distributed

localcore @ rigacore @

main

task104

task104

changesets created locally

changeset created in riga

task103

1

Pull task104

task105
2

Checkin new
changesets and create
a new branch

3

You can push task104
and task105 back to
riga

I can pull only task104 to my local repo. There might be hundreds of branches in the central repo at Riga,
but I’m only interested in branch task104. After pulling, I get a single changeset. Still, it is fully functional.
It contains an entire copy of the working tree, so I can continue working from there to create more
changesets and even new branches, as the diagram above shows.

And, even more important: you can push both task104 and task105 back to Riga (or any other repo) if
needed.

Replica in Plastic vs. Git
I like to compare the things that work differently in Plastic than Git since many of you will very likely have
a Git background when you try Plastic.

The replication process works differently in Git than in Plastic. And these partial replicas are one of the
key differences.

Let’s go with a new example, this way checking two identical repos, in Plastic and Git:

main

task029task023

master

task029task023

Plastic Git

Partial replicas | 119


Note for gurus

Notice how in Plastic, every single changeset belongs to a branch. So there is a one-to-one
relationship between cset and branch. While in Git, branches are just pointers, and then a commit
can be in more than one branch at a time.

So, what happens in each system when you decide to pull the task029 branch?

In Plastic, the two repos involved will negotiate which changesets need to be pulled: Only the cset in
task029 will be selected. Of course, it doesn’t mean only the files that were checkin in this cset will be
downloaded, but I’ll cover that later.

In Git, a tree walk operation will happen. Considering the topology of the graph I drew, the commits
marked in green will be downloaded:

main

task029task023

master

task029task023

Plastic Git

In this case, Git would download the full repo with all the changes. This is because the tree walk goes
first to master, then the head of the master branch has two parents, so the tree walk will walk on both
paths.

Of course, in Git, there are ways to limit depth, so you don’t end up pulling the entire repo if you don’t
want to. But, when you limit depth, then there might be restrictions trying to push new commits back.

I wouldn’t honestly say any of the alternatives is better than the other. Of course, I’m biased towards our
design decision for obvious reasons, but it is important to highlight the difference.

The dual lives of changesets
Changesets play a double role: They track the actual changes you checkin, and are also a complete
snapshot of the entire repo at the instant of the checkin.

This is important for you to understand partial replicas.

As usual, I will use a concrete example and a bunch of pictures to explain it.

120 | Centralized & distributed

0

main

5

2 3
6

task002

1 4

task001

A /src/foo.c
A /inc/foo.h
A /src/mk/makefile

C foo.c C foo.c

C foo.c C foo.c

C foo.h

The changesets in the diagram are decorated with the actual changes.

• First, I added three files to the repo.

• Then, I made a bunch of changes to foo.c both in task001 and main.

• Later, I merged task001 to main.

• And finally, I branched off task002 and modified foo.h for the first time.

This explains what each changeset contains in terms of changes. But what are the actual trees they point
to?

This is the tree for changeset 1, the one adding the three files. As you can see, the changeset points to a
specific revision of the root directory, which points to the rest of the revisions of the directories and files
it contains.

Partial replicas | 121

1

/

src/inc/

mk/foo.c

makefile

foo.h

6

53

10

4

2

Now, the changeset 2 in branch task001 modifies foo.c. This is what its tree looks like:

1

/

src/inc/

mk/foo.c

makefile

foo.h

2

/

src/

6

53

10

4

2

9

8

foo.c

7

This is how it works:

• foo.c is modified, so it goes from revision 1 to 7.

• But, to link to the new revision, directory src needs to go from 5 to 8. A new revision of the directory
is created.

122 | Centralized & distributed

• Interestingly, src revision 8 points to foo.c revision 7, but still points to mk revision 4 since the mk
directory subtree didn’t change. This is the actual magic that avoids recreating the entire tree on
every single change.

• Going up in the tree, we need to create a new revision of / to point to the new revision of src. Of
course, the inc subtree is not modified so / revision 9 links the previous inc revision 3.

In the figure above, green indicates the revisions created in changeset 1, dark grey shows the revisions
linked to tree 2 but were not created there.Finally, light grey indicates the revisions that are no longer
pointed by changeset 2.


No drama

I know this is not the most obvious concept in the book. You’re probably thinking, this guy is trying
to drive me crazy. I digress! It is way much simpler than anything you do daily as a programmer or
designer! ὤ�


Key takeaway

Understanding how changesets work will turn you into a master of version control. So, I believe this
is 10 minutes well invested ὠ�.

The following graphic shows the trees of the next changesets: 3, 4, 5, and 6. Instead of drawing crossed
lines all around, I just drew the references to the pre-existing subtrees in every new changeset tree.

3

/

src/

foo.c

4

/

src/

foo.c

inc/ 3

mk/ 4

5

/

src/

foo.c

inc/ 3

mk/ 4

6

/

src/

inc/

foo.h

inc/ 3

mk/ 4

10

11

12

13

14

15

16

17

18

19

20

21

17



Revision numbers

Every single element (we call it an item) controlled by Plastic can be identified by the path inside its
changeset, but it also has a unique revision number. Of course, the same revision number can be in
many different changesets. This is the case of inc/ revision 3, used by changeset 0, 1, 2, 3, 4, and 5.
In contrast, foo.c has been modified many times, and there are many different versions. But foo.c
revision 16 is linked by changesets 5 and 6.

Now, let’s go back to the replication scenario. When you pull task002, you won’t be just obtaining foo.h,
but the entire tree changeset 6 points to. It is an entire snapshot of the project, so it is fully operational.

Partial replicas | 123

0

main

5

2 3
6

task002

1 4

task001

C foo.h

If you pull task002 you won’t get the entire history of foo.h, foo.c, and the rest of files. Instead, you’ll get
the actual revision required to load the tree of changeset 6.

In contrast, if you replicate main, you’ll be replicating all the changesets in the branch: 0, 1, 4, and 5, and
with them will come all the individual trees of these changesets, and a good part of the history of the
files involved (excluding the changes made in task001, unless you decide to replicate that branch too).

A trick to replicate just a single changeset from main
Partial replicas allow us to replicate just one branch. But what if you want to replicate one changeset of a
branch and not the entire history? As you saw in the previous topic, it is technically possible.

When writing this, we didn’t have an interface to replicate only changeset 4 of main. This is not because
of any technical restriction, we could easily do it, but we didn’t add a way to specify just a single
changeset in a pull.

0

main

5

2 3
6

task002

1 4

task001

from4

Until we implement that, there is a trick you can use. Suppose you want to replicate changeset 4 (and, of
course, its entire working tree) instead of the entire main branch. Just create a branch from4 as I did in the

124 | Centralized & distributed

diagram, and replicate it. You’ll get just the cset 4 replicated to your new repo.

Why is this useful? In our case, our main repo has been evolving since 2006. So, if I want to replicate main
to my laptop, I’ll be downloading a good number of gigabytes. That’s not a problem at all, but suppose I
want to save a bunch of gigs because my SSD is running out of space. Even if the repo is large, the
working copy in the main head is just 500 megs or so. So, I find it very useful to have the option to
replicate just the equivalent of a working copy and be able to evolve from there locally, instead of having
to download the whole history of the main branch.

I can always connect to the central repo to browse the entire history, while my local stays tiny.

Merge history and partial replicas
Like we mentioned while talking about "sources of truth," we must be careful when running certain
merges on a partially replicated repo. This is because some missing merge history might alter the final
merge result in the partial replica.

It is easier seen with an example:

localcore @

rigacore @

main

B

bug199

A

bug197

main

bug199

A

If you merge bug199 to main at Riga, the common ancestor for the merge will be the changeset marked as

Partial replicas | 125

B in green, which is the correct one.

Now, suppose you only pull bug199 in your local repo and try to merge to main locally. The common
ancestor will be changeset A, marked in red. The merge result will be different (possibly more conflicts)
than if run in Riga.

That’s another reason why we prefer to do the merges on the central site.

Of course, you are free to merge locally between branches with a simpler hierarchy that you know you
own entirely, like a child branch you created in your repo [https://www.plasticscm.com/download/help/
partialreplica].

Possible future change in merge tracking with
distributed repos

For years, we considered making a change in how merge tracking works with distributed repos.
We considered 2 options:

1. Ask the original repo for the missing merge tree information (when available). This sounds
pretty cool under certain cases (especially for collocated teams with developers working in
DVCS mode but with full access to the central repo).

2. Always replicate the entire changeset hierarchy (aka merge tree info), but not the associated
data (so it would still be achieving the goal of partial replica and detecting when intermediate
csets are missing for merge).

We still haven’t changed this behavior, but it is worth noting that we have been considering this
for a while.

Xlinks with distributed repos
When you create an Xlink, there is an option in all GUIs and command line to specify if you want the Xlink
to be relative to the server.

If the relative server is set, it means that if /src/linked at repo core@london points to / at cset 58080ec0 at
repo comps@london, if you replicate core to core@local, it will expect comps@local to exist too.

126 | Centralized & distributed

https://www.plasticscm.com/download/help/partialreplica

main

londoncore @ localcore @

e3207e5d

main

londoncomps @

58080ec0

/src/linked

/

Xlink to

main

e3207e5d

main

localcomps @

58080ec0

/src/linked

/

Xlink to

Xlink created asrelative server

When you use relative server Xlinks, remember to replicate the branches in the comps repo and the ones
in the core repo. Otherwise, the tree of the changeset will fail to resolve when you try to switch to it.

Xlinks with distributed repos | 127

localcore @

main

e3207e5d

main

londoncomps @

/src/linked

Xlink to
???

If comps@local doesn't exist or if 58080ec0 was
not replicated, the Xlink will fail to resolve

Xlink created asrelative server

Finally, the other option is to use absolute server Xlinks, which means you want the xlinked tree to be
obtained from the original server.

localcore @

main

londoncomps @

58080ec0

/

main

e3207e5d

/src/linked

Xlink to

Xlink created asabsolute server

128 | Centralized & distributed

It is a good option too, but of course, it means you always have access to the comps@london repo (so your
internet connection must be available) while working on core@local.

Xlinks with distributed repos | 129

130 | Centralized & distributed

BRANCHING

Branches are central to Plastic. We already covered how essential task branches are from a workflow
point of view.

In this chapter, we will be more technical about what happens behind the scenes when you create a
branch in Plastic.

Every repository starts with a main
branch
Each new repository you create in Plastic comes with a default branch called main. The main branch
comes with a cset 0 that is just an empty changeset that contains the first revision of the root item / of
the repo.

0

main

You can rename the main branch if you want, although most teams keep it and use it as a convention for
the principal location to contain new versions.

Every changeset belongs to a branch
Even if you decide to skip branching entirely, you’ll be using at least one branch since every checkin
creates a changeset that belongs to a branch.

Every changeset has an associated task: Branches in Plastic are changeset containers.

0

main

31 2

As you can see, all four changesets in the figure belong to the branch main.

Every repository starts with a main branch | 131

Creating branches is cheap
Look at the following figure:

0

main

3

1 2

main/task001

0

main

31 2

Imagine I added 300k files to the repo in changeset 1 (three hundred thousand files). The cost of the two
branch alternatives in the figure is the same.

The only difference is the few extra bytes of metadata required for the branch object (name, owner,
date, etc.). So, creating a new branch is just adding a new light object to the metadata of the repo.

A branch is not a copy of the entire directory structure, nor a special directory like it was in the days of
Subversion or Perforce.

As you can see in the figure, every changeset points to its parent. This means it inherits everything and
adds its changes to the tree. So, suppose you modified three files in changeset 3. In that case, this is the
actual cost of the changeset, independently of whether it was created on branch main or main/task001.

Every changeset points to a given revision of the root directory to create a snapshot of the repo. But, none
of these trees are full copies. Instead, they are created incrementally, starting from the previous tree
and reusing most of it. For more information about how these snapshots work, see the section "The dual
lives of changesets".

Branches have their own metadata
Unlike what happens in other version control systems, like Git, branches in Plastic are complete entities,
not just pointers.

This means every branch is decorated with specific metadata:

132 | Branching

• Creation date

• Creator

• GUID

• Comments: Every branch can have a description, which is very useful to complement the name.

• Attributes: You can assign value-pair combinations to a branch. A typical use case is setting a status:
resolved, open, merged, failed.

Branch hierarchies

Child branches
Whenever you create a new branch, it is by default created as a child of the one it starts from.

0

main

1 2

main/task001

In this case, main/task001 is still empty (and it points to the same tree as changeset 2) since it doesn’t
contain any changesets. Its name says that task001 is a child of main. This is because branch objects in
Plastic have a parent field pointing to the branch they are child of.

Thanks to this relationship, it is possible to create entire branch hierarchies:

Branch hierarchies | 133

0

main

3

1 2

main/task001

4

main/task001/child01

Branch hierarchies are a way to introduce a namespace structure in your branches. They don’t have any
other impact other than keeping the branch structure better organized.

Top level branches
In every repo, there is at least one top-level branch: main. But, you can create as many top-level branches
as you need. In fact, from a practical perspective, both child and top-level branches have the same
behavior.

The following figure shows all branches created as top-level ones.

0

main

3

1 2

task001

4

child01

fix-3.0

134 | Branching


I drew the branch name in many diagrams in the book, not the full name, including its parent. I
mean, to keep the diagrams less verbose, I normally named branches as task001 when in fact, they
should have been main/task001 since, by default, Plastic creates branches as children of their
parents.

A meaningful branch hierarchy
As I explained above, it is up to you to use top-level or child branches. Their only impact will be how you
name the branches and how it is easier to manage your project.

Let me propose a strategy that I find useful: Keep top-level branches for structure branches and child
branches for tasks and bug fixes.

Take a look at the following diagram. First, we have the main branch with several task branches. Then, a
fix-3.0 that can be a maintenance branch to evolve an older release, and it also has its own set of child
branches.

main

main/t123

main/t124

fix-3.0

main/fix-3.0/bug089 main/fix-3.0/bug090

One of the advantages of defining a strict structure of top-level and child branches is that you can filter
by level in the Branch Explorer in the Plastic GUI, and then easily focus on the structural view, by filtering
out all second-level branches as follows:

Branch hierarchies | 135

main

fix-3.0

This simplification helps you focus on the repo structure by hiding more tactical short-lived branches.

Subbranches
Plastic can also manage branches inside branches. In reality, the changeset structure is the one creating
the actual trees of divergent history. With that in mind, it is perfectly possible to have something like the
following:

main

C1 C2 C3

Changesets C1, C2, and C3 all belong to main, so they are a branch inside a branch.

To learn more about subbranches, see "Handling concurrent changes on replicated repos". When
creating subbranches, you typically need to make concurrent changes on the same branch in replicated
repos.

Delete empty branches only
Branches can only be deleted when they are empty. This means that if you want to delete a branch, you
have to delete its changesets first. A changeset can only be deleted if it doesn’t have any descendants
(children or linked by merges).

Consider the following scenario: If you want to delete main/t124, you’ll need to delete its two changesets
first. But, to delete changeset D, you’ll need first to remove A, B, and C, to get rid of all its descendants.

136 | Branching

main

E

main/t124

fix-3.0

B A

C

D

Yes, Plastic branches are admittedly hard to kill.

But, in our opinion, the question is: why would you want to delete a branch?

The answer is obvious for users coming from Git: Deleting branches is a common technique; you need to
clean out old branches to keep the repo usable. But, that’s not the case in Plastic. If you want to learn
more about why we don’t delete branches, please check "We don’t delete task branches".

Changesets can be moved to a different
branch
Changesets belong to a branch, but they can be moved under certain circumstances.

A typical example is that you accidentally checkin changes to main instead of the right task branch
because you forgot to create the branch and switch to it.

It is possible to fix the issue and move the changesets to the new branch:

Changesets can be moved to a different branch | 137

main

A B C

main

task120

A B C

move

Learn more about how to move changesets [https://www.plasticscm.com/download/help/movechangesets].

Diff branches
Branches are changeset containers meant to hold parallel project evolution until divergent lines of
evolution converge.

But, besides being containers and tenants of project hierarchies, branches also exist to be diffed.

This is very important to highlight because many users tend to think only about changeset diffing and
not full branch diffing.

What happens when you diff a branch? In the example below, diffing task120 is the equivalent of diffing
changesets C3 and B.

main

B

task120

C1 C2 C3

Diff (task120) = Diff(B, C3) = changes made in C1 + C2 + C3

138 | Branching

https://www.plasticscm.com/download/help/movechangesets

The important thing to remember is that Plastic branches know where their starting point is, so when
you diff a branch, Plastic knows the boundaries of the changesets it contains.

Git users need to do this arithmetic themselves since the system doesn’t track the origin of the branches.

Learn more about "diff math" [https://www.plasticscm.com/download/help/diffmath].

Diff branches | 139

https://www.plasticscm.com/download/help/diffmath

140 | Branching

MERGE AND CONFLICT
RESOLUTION

Merging is the ultimate practice of version control. Master it and you will become a version control
expert.

This chapter contains everything you need to get a deep, complete understanding of the craft of
merging. Pay attention to the details!

Pay attention to the details because you are going to walk the arcane paths of merge mastery.

Merge defined
Before diving into the details, I will share the basics of a merge is and its use.

Born to merge
Branches are created to be merged. However, only a small number of them stay independent, creating
parallel dimensions of unmerged code.

Merge from a branch
Merge is the operation to incorporate the changes made in a branch into a different one.

In the figure, to incorporate the changes A, B, and C done in bug-2001 into main, you need to merge bug-
2001 to main.

Merge defined | 141

main

bug-2001

A B C

The result will be something as follows:

main

bug-2001

A B

R

C

Where the resulting changeset R contains the changes made in A+B+C and puts them in main.

The merge from a branch is technically equivalent to the merge from a subbranch since the same logic
applies:

main

142 | Merge and conflict resolution

Merge from a changeset
Merge is also the operation to merge from a given changeset instead of taking an entire branch.

main

bug-2001

A B

R

C

If you merge from changeset B into main, you’ll be getting the changes made in B and A but skipping C.

Merging bug-2001 is equivalent to merging C (the head of the branch).

There are ways to merge only the changes made in a changeset and not the ones in their parents. This is
called cherry pick and we’ll be covering it in detail in this chapter.

Merge contributors

Repositories are graphs of changesets
All through the book, you have seen a massive number of repository graphs. It is the same graphic
Plastic renders in the Branch Explorer. It is a representation of the repository evolution through time.
The history of the changesets and their branches, how they evolve, diverge, and converge again.

Each time you checkin, you add a new node to the graph:

The arrow direction shows a "is parent of relationship". This way, 0 is the parent of 1. And 2 is the parent
of 3. They might belong to the same branch or different ones, but the important thing is the child to
parent links between them.

Merge contributors | 143

3

bug-2010

4

0

main

1 2

Finally, the merge links indicate the other type of relationship: Source to the result of a merge.

3

bug-2010

0

main

1 2

4

5

source of the merge

result of the merge

If we remove the branch decorators, what is left is a typical graph with a single root (changeset 0) and
then nodes that diverge in branches and converge again with merges.

3

bug-2010

0

main

1 2

4

5

This graph is essential for users to understand the repo history, but it is also the fundamental data
structure that Plastic SCM uses to resolve merges.

144 | Merge and conflict resolution

Arrow direction
Now, I’ll explain why arrows in the Branch Explorer diagram are rendered the way they are.

We always say the Plastic changeset structure is a DAG: Directed Acyclic Graph. Acyclic? It is full of cycles,
thanks to the merge links! Well, visually, yes, but internally for merge tracking calculation purposes, all
links go backward.

This is how Plastic walks the tree from 5 back to changeset 0.

bug-2010

3 4

0

main

1 2 5

The first path is obvious. Simply back from 5 to 2 thanks to the parent link, then back in a straight line to
0.

The second path goes walking back the merge link from 5 to 4, then back.

Why is it then that the merge link is displayed this way? If everything is heading back, why is the merge
link the only one going in the wrong direction and creating a cycle?

3 4

0 1 2 5

As I said above, merge links are always walked backward. Always. From result to source. They are never
walked in the direction they point to.

Why do we keep them this way?

Well, when we talk about a merge, we typically say: merge changeset 4 to main. We talk about a merge as

Merge contributors | 145

from a branch or changeset to a destination branch or changeset. That’s why we always considered it
very natural to render merges this way.

Of course, there are other possible options, as the following diagram shows:

3 4

0 1 2 5

Option 1)Render merge links result to source. Opposite to
current direction.

Option 2)Render changeset links as parent to child links.

3 4

0 1 2 5

146 | Merge and conflict resolution

Current)Changesets linked as we walk them during merge
to find ancestors. Merge links as used in "merge 4 to 5".

3 4

0 1 2 5

Should we change how we render the Branch Explorer to option 1 or 2? I think it is worthwhile to
understand why everything is rendered the way it is.


Customization

It is possible to render the Branch Explorer like in option 1 by setting a given flag in the
configuration file [https://www.plasticscm.com/download/help/arrowstory].

Merge contributors: source, destination and base
Every merge has 3 contributors: The source, the destination, and the base or common ancestor.

Check the following figure:

Merge contributors | 147

https://www.plasticscm.com/download/help/arrowstory

main

B

main/bug2061

D

S

base or
common
ancestor destination

source

a.k.a.
"theirs"

a.k.a.
"yours"

If you want to merge from bug2061 to main, then the contributors are as follows:

Source Where you are merging from. In this case, the changeset marked as S. It is also
known as "theirs".

Destination Where you want to put the result of the merge. Marked as D in the diagram. It
is also known as "yours" since this is typically where your workspace is when
you merge.

Base The common ancestor of the other two contributors. If you walk the graph back
from D and S, B is the first node they have in common.

Once the merge has started, the resulting graph will look as follows:

148 | Merge and conflict resolution

main

B

main/bug2061

D

S

R

result

Note how I used dashed lines for the result, the merge link pointing to it, and the line connecting the
result with its parent, the destination. This is how we draw in-progress merges. Once the changeset
resulting from the merge is checked in, the lines will be uniform and not dashed.

If you decide to merge from main down to main/bug2061, the contributors will be slightly different:

main

B

main/bug2061

S

result

main

main/bug2061

base or
common
ancestor

destination

source

a.k.a.
"theirs"

a.k.a.
"yours"

RD

The base would remain intact, but source and destination would be switched. The Result is always a
destination child, so it would now belong to main/bug2061 instead.

The cases above are considered the canonical ones where the source and base are separated by at least
one changeset.

Merge contributors | 149

Let’s see a new scenario:

main

main/bug2061

S

RB
D

In this case, you want to merge from main/bug2061 into main, but there weren’t new changes in main after
bug2061 branched off. Then, what happens is that the same changeset is simultaneously base and
destination. This is typical when you create a couple of branches and then merge the first one back to
main. There is no possible conflict because the actual topology of the merge says no concurrent changes
exist.

Plastic always creates a changeset as result of the
merge
It is essential to note that Plastic always creates a changeset as a result of a merge.

I highlight this because this is radically different than what happens in Git. Since many of you are
familiar with Git prior to your jump to Plastic, understanding the difference is worthwhile.

The first scenario is where the destination and the base are not the same changeset/commit. This is a
case where conflicts might potentially happen. As you see in the figure, Plastic and Git behave in the
same way. Both create a result changeset that reflects what happened.

main

B

main/bug2061

D

S

R

master

B

bug2061

D

S

R

Plastic SCM Git

The second scenario happens when base and destination are the same changeset/commit. In other
words, if no possible conflicts can occur due to the repo topology:

150 | Merge and conflict resolution

main

main/bug2061

S

R

master

bug2061

S

B
D

B
D

master

bug2061

S
B

D

Plastic SCM Git

Here Git performs a fast-forward. There are no possible conflicts, so it moves the master to the same
commit where bug2061 is. It is quite efficient because new commits are not created. The drawback is that
the history of the branch is lost, and you can’t figure out anymore which commits were created as part of
bug2061 and which ones as part of main.

In Plastic, we always create a result changeset. This is because a changeset can’t be in more than one
branch at the same time, and also because it is crucial for us to properly preserve the branch history.

Graphs with potential merge conflicts
As you saw in the previous section, there are cases where there are no possible conflicts. For example,
suppose the base and the destination are the same changeset. In that case, all Plastic has to do is add
the correct files to the resulting changeset since no possible conflicts can happen.

The other scenario is when the shape of the graph tells us that there are potential conflicts. I say
potentially because, more often than not, there might not be possible conflicts even when the graph has
concurrent changes. Let me show you why:

main

B

main/bug2061

D

S

R

C foo.c C bar.c

C inc.c C inc.c

In the figure, you see how in main/bug2061 only inc.c was modified while in main after bug2061 was

Merge contributors | 151

branched, only foo.c was changed. This means that while, at first sight, there might be potential
conflicts in the graph because there are concurrent changes, in reality, no files were changed
concurrently.

The same graph topology can lead to conflicts when concurrent changes on the same file happen, as the
branch bug3001 shows in the following figure:

main

B

main/bug3001

D

S

R

C bar.c

C inc.c C bar.c

Here bar.c was changed both in source and destination, which provokes a file conflict. The conflict can
still be automatically solved, as we’ll see in the 3-way merge, but there will be cases where manual user
intervention will be necessary.

2-way vs. 3-way merge
Before we jump into how merge tracking works and why it is so useful, I think it is good to cover the
difference between 2-way and 3-way merge.

As you will see in a moment, merge tracking is all about finding a "common ancestor". We already saw
how every merge is about finding 3 elements: The base, the source, and the destination. Now, why is
this base thing so important?

The answer lies in the difference between 2 and 3-way merge.

2-way merge: life before common ancestors
Look at the following case:

152 | Merge and conflict resolution

Print(“bye”);

Y
Yours Mine

Print(“bye”);

M

30 30

for i = 1 to 20 for i = 1 to 2051 51

Print(result);70 70

Did you delete line 70, or did I add it?

There is no way to know looking at the two files. Only our knowledge of the actual file would tell.

This is a 2-way merge; you merge 2 files by comparing one to the other.

As you can see, there is no way to merge files with a 2-way merge without manual intervention. Conflict
resolution can’t be automated at all.

This is how old version control systems (namely SVN, CVS and several others) used to work, and that’s
the primary reason why an entire generation of programmers all around the world developed "merge
phobia". Can you imagine having to merge 300 files when all merges need mandatory user intervention,
even if changes were trivial?

That’s what a world without common ancestors would look like ὤ�.

3-way merge
Let’s forget about version control for a second. Let’s focus on manually solving a conflict like the one in
the previous example. How can anyone solve a merge conflict without having previous knowledge about
the project?

They would need to check what the file looked like before the two contributor made changes.

This "how the file was" is what we call the base. If we use it to solve the conflict, then the scenario will be
as follows:

2-way vs. 3-way merge | 153

Yours (Source) Mine (Destination)Base

Print(“bye”);

Y

30

for i = 1 to 2051

70

Print(“bye”);

B

30

for i = 1 to 2051

Print(result);70

Print(“bye”);

M

30

for i = 1 to 2051

Print(result);70

As you can see, the conflicting line 70 already had the content Print(result); initially. So, it is clear that it
was deleted on source (yours) and untouched on destination (mine). The conflict can be automatically
resolved now; all we need to do is keep the deleted line.

This is the magic of 3-way merge. Most of the actual file conflicts will be automatically resolved using
very simple logic: If you modified one line and I didn’t touch it, then yours is the one to keep.

The good thing here is that 3-way merge can solve many conflicts in a single file. Let’s see another
example: This time, both lines 30 and 70 enter the scenario. First, one user modified line 30 while at the
same time the other deleted line 70. Still, a 3-way merge tool can merge the file without manual
intervention. The figure shows the base and the two contributors and then the result.

As you can see, applying very simple logic, it is possible to conclude that we must keep line 30 from the
destination (marked in green in the result to highlight the chosen contributor). Line 70 must be kept
from source like in the previous example. The result marks the deleted line in blue to reflect the
contributor it is coming from.

154 | Merge and conflict resolution

Yours (Source) Mine (Destination)Base

Print(“bye”);

Y

30

for i = 1 to 2051

70

Print(“bye”);

B

30

for i = 1 to 2051

Print(result);70

Print(“hello”);

M

30

for i = 1 to 2051

Print(result);70

Result - automatic

Print(“hello”);

R

30

for i = 1 to 2051

70

Now imagine you have to merge from a branch where 300 files were changed while the same 300 files
were also modified in the destination branch. Thanks to a 3-way merge, the merge most likely won’t
require manual intervention because the very simple logic behind the text merge algorithm will be able
to solve all conflicts automatically.

The actual logic to automatically solve conflicts can be summarized as follows:

Source (yours) Base (common ancestor) Destination (mine) Result

A A B B

B A A B

B A B B

B A C Manual conflict

Now, what if two developers modify the same line divergently in two different ways? Check the following
figure where the two developers modified the for loop differently. It was from 1 to 20 initially, but then
one decided to set it as 1 to 15 while the other changed to 1 to 25.

The merge tool doesn’t know what to do in this situation and will ask for human intervention. This is

2-way vs. 3-way merge | 155

what we call a manual conflict.

Yours (Source) Mine (Destination)Base

Print(“bye”);

Y

30

for i = 1 to 1551

70

Print(“bye”);

B

30

for i = 1 to 2051

Print(result);70

Print(“hello”);

M

30

for i = 1 to 2551

Print(result);70

15 20 25

As you can see, the key is to have a base or common ancestor to run 3-way merges. Otherwise, all
merges would be manual.

All the links and arrows in every single diagram in the book have a key purpose: Provide the merge
algorithm with the information it needs to find the common ancestor between any two nodes in the
graph. This is the way to find the right base for every single file involved in a merge.

Layout of 3-way merge tools
Are you familiar with any of these tools? Kdiff3, p4merge, BeyondCompare, WinMerge? They are all
merge tools. Plastic comes with its own 3-way merge tool, called Xmerge, and we think it is much better
than all the others. But my point here is not to sell you the merits of our tool, but to explain what they all
have in common.

As you saw in the examples above, when you do a 3-way merge, you need to handle the source (the
changes you are merging from), the destination (your copy), and the base (how the file was before any
of the changes). The drawings in the previous sections showed a very typical layout. It is, in fact, the one
we use:

156 | Merge and conflict resolution

Yours (Source) Mine (Destination)Base

S B D

R

main

B

main/bug3001

D

S

base or
common
ancestor destination

source

a.k._1_. "theirs"

a.k._1_. "yours"

An alternative one, used by many merge tools, unified the result/destination as follows:

Yours (Source) Destination/ResultBase

S B D

I prefer the first option (I mean, that’s the one we use after all), but you need to keep in mind that there
are two main alternatives. Once you know that, no merge tool will be difficult for you. They might have
more or fewer buttons, a simpler or more cluttered UI, but once you know the key elements in any tool,
it is just a matter of just finding what you are looking for.

2-way vs. 3-way merge | 157

Merge tracking
All the arrows and nodes I drew so far in the book have a dual purpose: First, explain how your repo
evolved to you, the developer. The other is to resolve merges.

This second part is what the Plastic core cares about.

Whenever you launch a merge, the first thing Plastic has to do is identify the three contributors of the
merge. Two of them are obvious because you specify them: The source and the destination.

Merge tracking is all about calculating the correct common ancestor or base.

Calculating the common ancestor
To find the common ancestor of two given changesets, the Plastic server takes the changeset graph (the
same structure you see in the Branch Explorer) and walks back the tree until the paths meet.

As usual, it is much easier with an example:

131

main

B 133

134

main/bug3001

D

S

The algorithm starts two walks from D and S, and their paths collide first on B, which is the base or
common ancestor.

The base for the merge is the nearest common ancestor because, in the example, the changeset 131 is
also a valid common ancestor, but it is not the closest to the two contributors.

Of course, life is not always that simple. Finding the common ancestor is not that obvious as in the
previous example. Check the following figure:

158 | Merge and conflict resolution

B

main

fix-7.0

bug3001

S

D

task701

Note that the case is not super difficult either, but as you can see, you have to walk through several
branches before finding the changeset marked as B. It is a pretty obvious case, though, exactly like the
first one but with a longer tree walk to reach the base.

What makes merge tracking slightly more complicated is that every new merge is affected by the
previous merge history (merge history is equivalent to merge tracking, so you can also use it
interchangeably).

Try to find the common ancestor in the following figure: (don’t go to the solution until you make a guess
ὠ�)

131

main

133 135

132

fix-7.0

138

134

136

bug3001

S

139 D

task701

I want to merge branch bug3001 into task701, so Plastic will walk back from S and D and consider the
merge arrows as traversable paths. So, the result will be as follows:

Merge tracking | 159

main

fix-7.0

B

bug3001

S

D

task701

Yes, changeset 134 is the actual common ancestor, thanks to the merge link. Otherwise, it would have
been 131.

All these cases I have described so far are pretty simple, and this is how most typical merges will be most
of the time. However, there will be situations when more than one common ancestor will be found at the
same distance. And then, recursive merges will enter the scene. But, before going any deeper into
merge tracking, let’s discover what happens once the right common ancestor is found.

Merging trees
We’ve arrived at the core of the merge process! You are about to become a master in the internals of
merge, and understand how Plastic merges branches. Armed with this understanding, you will no longer
have trouble understanding even the more complex merges.

Of course, we are going to start with a branching diagram:

160 | Merge and conflict resolution

1

main

B 3

4

main/bug3001

D

S

R

A /src/bar.c
A /inc/bar.h
A /src/foo.c

C /src/bar.c C /src/foo.c C /src/bar.c

C /src/bar.c A /inc/foo.h

We want to merge bug3001 into main. The common ancestor is already located, and the diagram is
decorated with the actual changes.

To calculate the merge, Plastic doesn’t load all the individual diffs made in 3 and 4 and then destination
and source. It doesn’t accumulate the changes to find the solution. (This is not a bad alternative and
some systems like Darcs do something similar, but we do it differently).

What Plastic does is load the tree at base, source, and destination and then calculate the diffs between
source and base, then destination and base and work based on that.

Let’s go step-by-step. First, I’m going to create the tree for changeset 1:

/

src/inc/

bar.c foo.cbar.h

1

4

2 3

5

6

1

6 These are revision numbers.
They are global (per repo) and
they also have an associated
GUID (like changesets)

The numbers are the revision ids. Every object in Plastic has an object id, which is an int (4 bytes). It is
also identified by a GUID that makes it unique even across replicated repos. I will use the revision id
(revid for short) but the example would also work with GUIDs.

It is also important to note that every file or directory also has an item identifier (item id). This means

Merge tracking | 161

bar.h might have many different revisions, but they all belong to a given item id.

Now, let’s go to changeset number 2, the base, where we only changed /src/bar.c. This is what its tree
looks like:

B

/

src/inc/

bar.c foo.cbar.h

1

4

7 3

8

9

I marked in green the nodes that were modified from the previous changeset 1. As you can see, there is
a new revision for bar.c, then for its containing directory src/ and then the root /. The rest of the tree
remains unchanged.

For the sake of clarity, I drew all the trees in the example:

A /src/bar.c
A /inc/bar.h
A /src/foo.c

C /src/bar.c C /src/foo.c C /src/bar.c

C /src/bar.c A /inc/foo.h

S

/

src/inc/

bar.c foo.cbar.h

1

20

13 3

14

21

foo.h

19

/

src/inc/

bar.c foo.cbar.h

1

4

13 3

14

15

4

/

src/inc/

bar.c foo.cbar.h

1

4

2 3

5

6

1

B

/

src/inc/

bar.c foo.cbar.h

1

4

7 3

8

9

3

/

src/inc/

bar.c foo.cbar.h

1

4

7 10

11

12

D

/

src/inc/

bar.c foo.cbar.h

1

4

16 10

17

18

162 | Merge and conflict resolution

I think this graphic gives you a pretty good explanation of how Plastic works. Of course, it is very good to
understand merge, which is our goal now.

As I said, to figure out the actual changes since the base Plastic doesn’t load all the trees, it just loads the
base, source, and destination.

Once the trees are loaded, Plastic first calculates the diff between the base and destination trees. It will
be something as follows:

B

/

src/inc/

bar.c foo.cbar.h

1

4

7 3

8

9

D

/

src/inc/

bar.c foo.cbar.h

1

4

16 10

17

18

Diff base and destination

The merge code walks the two trees as follows:

• Roots are different. revid 9 != revid 18. So, continue walking.

• Take inc/. revid 4 == revid 4 in both trees. Diff can prune the inc/ subtree.

• src/ revid 8 != revid 17. Continue walking.

• Then, it finds that both bar.c and foo.c differ, so both will be marked as different.

Diff(base, destination) = changed /src/bar.c and /src/foo.c

Now, the differences between base and source:

Merge tracking | 163

B

/

src/inc/

bar.c foo.cbar.h

1

4

7 3

8

9

Diff base and source

S

/

src/inc/

bar.c foo.cbar.h

1

20

13 3

14

21

foo.h

19

Here:

Diff(base, source) = added /inc/foo.c and changed /src/bar.c

Now, the algorithm takes the two pairs of differences to find conflicts. It can mount a result tree like the
following:

R

/

src/inc/

bar.c foo.cbar.h

1

20

C 10

xx

xx

foo.h

19

Taken from
Source

Taken from
Dst

Taken from
Source

Conflict
3-way-merge

needed

As you can see, it can already mount /inc/foo.h in the tree, and it knows it has to load /src/foo.c revid
10. But, there is a conflict in bar.c because concurrent changes happened on both contributors.

164 | Merge and conflict resolution

Let’s now put the three trees together:

S

/

src/inc/

bar.c foo.cbar.h

1

20

13 3

14

21

foo.h

19

B

/

src/inc/

bar.c foo.cbar.h

1

4

7 3

8

9

D

/

src/inc/

bar.c foo.cbar.h

1

4

16 10

17

18

To solve the conflict in bar.c, we’ll need to run a 3-way merge loading revid 7 as base, 13 as src, and 16
as dst.

And this is how everything comes together! Find the common ancestor to locate what changed in the
two contributors and then locate the files' common ancestors in conflict ὤ�.

I don’t think I’ve ever drawn so many graphics before in my life ὠ�!

If you went through all this and got it, now you can say you are an expert in merging. Congratulations!

Changeset-based merge tracking
Merge tracking happens at the changeset level, not the file level.

When Plastic tries to find the common ancestor of a merge, it does it on a tree-wide level.

I’m going to explain what this exactly means and the implications it has.

Consider the following scenario:

Merge tracking | 165

1

main

2 3

4

bug3001

4

5

R

C /src/bar.c

A /inc/foo.h

C /src/foo.c

Suppose somehow you
tweak the merge so that

only bar.c is merged

You only want to merge /src/bar.c to main, but skip the others because you are not interested in them
for whatever reason. Plastic can’t do that but suppose for a moment that you manage to make it
happen.

Now, you’ll have a resulting changeset where only bar.c was merged from bug3001 and a merge link set,
as follows:

1

main

2 3

4

bug3001

4

S

D

C /src/bar.c

A /inc/foo.h

C /src/foo.c

Now you would like to
get foo.c and foo.h to

main too...

C /src/bar.c

And finally, you want to get foo.c and foo.h into main. You try to repeat the merge but the merge link
between source and destination clearly says the merge is impossible because there is a direct path
between them (source is a parent of destination, so no merge can happen).

Do you see the problem now? That’s why when you merge a branch or changeset, you merge all or
nothing because otherwise, we’d render the merge links useless.


We are considering one alternative to give users more flexibility, which is allowing the first merge to
happen but without setting the merge link. Maybe we can set some informative link so you visually
know something happened (although the algorithm will ignore it to find ancestors). Then, the next
time you want to merge, you’ll be able to complete the operation.

The alternative to this is per-item (per file, per directory) merge tracking. Plastic and Git (and any modern
version control) uses per-changeset, but SVN, Perforce, TFS, and the now-archaic Clearcase, use per-item
merge tracking. We used per-item before version 4.0.

What are the cons of per-item?

166 | Merge and conflict resolution

• Speed. When you have a tree with, let’s say, 300k files, you have 300k different merge trees, one per
file and directory. You can optimize the calculation as much as possible, but believe me, it will never
be as quick as simply having to traverse one single merge tracking tree.

• Conflict resolution. With changeset-oriented merge tracking, you merge trees. Fixed trees associate
with changesets. This enables solving several directory conflicts that were simply impossible by the
per-item merge tracking. We’re going to navigate directory conflicts soon, and you’ll find out why
they are useful to have in your toolbelt.

Little story
In 2011, Plastic was adopted by a large team of 1000 developers who worked on a single huge
codebase. The main reason to abandon Clearcase and go to Plastic was that large merges
decreased from several hours to just a few seconds. Per-changeset merge tracking was the reason
for the increase in speed.

Why merge tracking matters
Merge tracking can save tons of manual work by automating merges that otherwise would require
manual intervention. We already saw it with some simple 3-way merges. Now, I’m going to walk you
through a very interesting case where you’ll discover why having proper merge tracking makes a huge
difference.

Let’s start with this scenario:

101

main

103 R

102

fix-7.0

104

C /src/bar.c

C /src/bar.c

We want to merge fix-7.0 back to main, and there is a conflict on /src/bar.c.

Let’s take a look at the actual files and solve the conflict:

Merge tracking | 167

Source DestinationBase

Print(“bye”);

S

30

for i = 1 to 1551

70

Print(“bye”);

B

30

for i = 1 to 2051

Print(result);70

Print(“hello”);

D

30

for i = 1 to 2551

Print(result);70

15 20 25

Result – solved manually

Print(“hello”);

R

30

for i = 1 to 3351

70

33

Look at the figure carefully:

• Line 30 was only modified on destination, so the Print("hello"); is kept.

• Line 70 was deleted on source, so the deletion will be kept too.

• The problem is in line 51 because it was changed divergently. Manual intervention is required, and
then we decide to keep it as for i=1 to 33. We didn’t keep any of the contributors. We just decided
to modify the result manually.

Then, we continue working on our project, making a few more changes as follows:

168 | Merge and conflict resolution

101

main

103 105

102

fix-7.0

108

104

106 107

109 110

task701

C /src/bar.c

C /src/bar.c

C /src/bar.c

C /src/bar.cbug3001

And now, we want to merge bug3001 into task701. The common ancestor will be changeset 104 (the old
source this time). Let’s zoom into the file contents to solve the possible conflicts:

Merge tracking | 169

104

Print(“bye”);

B

30

for i = 1 to 1551

70

107

Print(“bye”);

S

30

for i = 1 to 1551

70

110

Print(“hello”);

D

30

for i = 1 to 4551

70Print(result++);

Print(“hello”);

R

30

for i = 1 to 4551

70

Result – solved automatically

Print(result++);

What happened is that in task701, line 51 was modified to be 1 to 45. Meanwhile, in branch bug3001, line
70 was added with content Print(result++);.

The result of the merge can be solved automatically by a 3-way merge tool.

Well, you may say, this is pretty normal. The 2 branches don’t touch the same line, so why should it be
manual?

Let’s take a look at how the merge would be if we ignore the merge link between 104 and 105:

170 | Merge and conflict resolution

101

main

103 105

102

fix-7.0

108

104

106

bug3001

107

109 110

task701

C /src/bar.c

C /src/bar.c

107

S

30

for i = 1 to 1551

70

110

D

30

for i = 1 to 4551

70

101

B

30

for i = 1 to 2051

Print(result);70

20 4515

Print(“bye”);Print(“bye”); Print(“hello”);

Print(result++);

Not only is the merge not automatic anymore, but you have two manual conflicts instead of one!

Take your time to look closely at the figure and understand why there are manual conflicts now. It will
really pay off.

Recursive merge - intro
In this chapter, we always had two contributors (source and destination) and one common ancestor in
all the examples. All the trouble was finding the ancestor, but the only difficulty was walking the tree a
little bit further. Of course, the ancestor could be harder to find in a forest of branches, but it wouldn’t be
that hard for an algorithm.

Now, what if there is more than one ancestor found at the same distance? Let’s see an example:

Merge tracking | 171

10

main

11 13

12 14 16

fix-7.0

15 R

We call this a crisscross merge scenario. The case itself is forced because there is no good reason to
merge from 11 to 16 when 15 already exists. But, as you can imagine, this could happen in a distributed
scenario where the merge 11 to 16 happens on a repo where 11 is the head of main. In contrast, 12-15
happens on a different one where only 12 was pushed at the time.

Anyway, the scenario in the figure is the shortest one driving to a merge with multiple ancestors, but the
same can happen with several changesets and branches between the "crossed" merges, as we’ll see
later.

As you can see in the figure, both changesets 11 and 12 are valid nearest common ancestors because
they are both at the same distance from 16 and 15. So which one should we choose?

The answer is not choosing one because a random choice will lead to incorrect merges, but running a
recursive merge where a new unique virtual common ancestor is calculated.

The figure shows the new virtual ancestor that Plastic creates by merging changesets 11 and 12. Then its
resulting tree is used as ancestor of 15 and 16 to resolve the merge.

10

main

11 13

12 14 16

fix-7.0

15 R

V

Plastic does all this operation under the hood when it finds multiple ancestors, so normally you are not
even aware of what is going on and the merge simply happens correctly.

There is some effect you can notice, though. Suppose a file foo.c is modified by 11 and 12, so it needs to

172 | Merge and conflict resolution

be merged, and there are manual conflicts. Plastic will ask you to solve those conflicts to use the
resulting file as the basis for the next merge. Then, if the file was again modified in 15 and 16, you could
have to solve a manual conflict again. The effect is that you’ll see the merge tool show up twice for the
same file. Now you understand why it can happen ὤ�.

Recursive merge – more than 2 ancestors
Once the basics of recursive merge are clear, let’s jump into a more complex case, where more than two
ancestors are found at the same distance.

Take a look at the following figure:

10

main

11 14

13 15 17

fix-7.0

16 R

12

bug90

As you see, now we have three ancestors at the same distance: 11, 12, and 13. So how does Plastic solve
this issue?

It will chain virtual ancestors, merging them in pairs recursively (that’s where the name comes from)
until only one is left. This final virtual ancestor is then used to solve the original merge.

The next figure explains ancestors V1 and V2 are created and V2 is used as the common ancestor for 16
and 17.

Merge tracking | 173

10

main

11 14

13 15 17

fix-7.0

16 R

bug90

V1

V2

12

Now, you have a perfect understanding of how Plastic solves even complex merge situations.
Admittedly, you won’t be facing recursive merges very often. Still, it is good to have a proper
understanding of what is going on when they happen.

A last note: Do you remember the entire explanation in "Merging trees"? In essence, Plastic is merging
three trees, and that’s why a solution like the one described here is possible. The "tree merge" code
takes three trees and then produces a result. All we have to do is give it a different tree, in this case, a
virtual one, so it can operate and create a meaningful result.

Git can do recursive merges too
Git implements an algorithm to deal with recursive merges, the same as we do. We tested all our
merge cases with Git when we implemented our original solution to double-check that we were on
the right path.

Recursive merge – why it is better than just choosing
one ancestor
You might be wondering: "Why all this trouble and complexity instead of just picking one of the possible
ancestors to solve the merge"? Ok, let’s see why with an example.

In the following scenario, there are two possible common ancestors at the same distance of contributors
6 and 7. As you can see, this scenario is not a crisscross. Instead, it is a more realistic one, but multiple

174 | Merge and conflict resolution

ancestors at the same distance are found again.

1

main

3

2

6

task001

7 R

5

4

task002

First, let’s explore what happens if we randomly choose changeset 4 as common ancestor and perform
the merge. By the way, I’m using the following image to introduce the file’s actual contents in the conflict
in the example.

4

class Program10

static void Main()30

50

{40

}60

}70

{20

6

class Program10

static void Main()30

Print("See you");50

{40

}60

}70

{20

7

class Program10

static void Main()30

Print("Hello");50

{40

}60

}70

{20

While delving into 3-way merge, we learned this would be a merge with manual conflict resolution since
line 40 was modified differently by the two contributors. So, choosing 4 as a common ancestor will end
up in a manual conflict.

Let’s now check what happens if we choose 3:

3

class Program10

static void Main()30

Print("Hello");50

{40

}60

}70

{20

6

class Program10

static void Main()30

Print("See you");50

{40

}60

}70

{20

7

class Program10

static void Main()30

Print("Hello");50

{40

}60

}70

{20

This time, the conflict would be automatic, and the result would be keeping the Print("See you");
sentence.

Merge tracking | 175

Which one is better? Without recursive merge, you have to rely on luck. Depending on what the
algorithm does, it could pick 3 or 4. Then you can end up with conflicts or even with a wrong automatic
resolution. I mean "luck" because there is no heuristic to actually make a better choice.

Now, let’s explore what recursive merge would do; it will merge ancestors 3 and 4 to create a new virtual
one as the common ancestor for changesets 6 and 7. Ok, let’s go ahead:

1

class Program10

static void Main()30

50

{40

}60

}70

{20

3

class Program10

static void Main()30

Print("Hello");50

{40

}60

}70

{20

4

class Program10

static void Main()30

50

{40

}60

}70

{20

As you can see, the virtual merge will be automatic; it will choose Print("Hello"); in line 40. No conflicts.

Let’s now use this result as the virtual ancestor for 6 and 7:

V

class Program10

static void Main()30

Print("Hello");50

{40

}60

}70

{20

6

class Program10

static void Main()30

Print("See you");50

{40

}60

}70

{20

7

class Program10

static void Main()30

Print("Hello");50

{40

}60

}70

{20

Now, it is clear that the merge is automatic again, and the final value for line 40 is Print("See you");.

Recursive merge can solve this conflict automatically in a consistent way, and the randomness of
choosing one selector over the other is gone.

How important is this kind of resolution? Well, consider a real-world scenario with a few hundred files
involved. Suppose your branch history leads to a multiple common ancestor scenario. You could
potentially be saving tons of manual conflict resolutions by taking advantage of recursive merge ὤ�.

176 | Merge and conflict resolution

More about recursive merge
We wrote a couple of blogposts explaining recursive merges a few years ago. I’ve reused most of
the materials for this chapter with a proper refresh. The original blogpost triggered a discussion
with the main contributor of Mercurial. He ranted about Plastic algorithm being broken to finally
admitting he was wrong and that implementing recursive was "too costly" which is why Mercurial
didn’t have it. You can find the two blogposts here:

• Merge recursive strategy [https://www.plasticscm.com/download/help/recursivemerge]

• More on recursive merge strategy [https://www.plasticscm.com/download/help/morerecursivemerge]

Plastic merge terminology
When you merge branches or changesets in Plastic, you’ll often find a few names associated with the
merged changes before you checkin. Things like "copied", "replaced" and so on. I’m going to explain
each of them in this section.

Check the following figure:

101

main

103 R

bug2061

104

C /src/bar.c

C /src/bar.c

A /inc/foo.h

C /src/foo.c

/src/bar.c
Merged -
checkedout

C /src/foo.c Replaced

A /inc/foo.h Copied

D /inc/cc.h

D /inc/cc.h Removed

• bar.c has been modified on both branches, so it will require a merge.

• foo.h is added in bug2061.

• foo.c already existed in main and was only modified on bug2061, so there won’t be any conflicts.

• cc.h was deleted in bug2061.

Now, once you merge, the files are marked as follows:

Plastic merge terminology | 177

https://www.plasticscm.com/download/help/recursivemerge
https://www.plasticscm.com/download/help/morerecursivemerge

• bar.c – merged – checkedout. This means the file was modified concurrently because it has changes
in source and destination. This one is pretty trivial.

• foo.c – replaced. Remember the trees we saw in "Merging trees"? Well, foo.c revision in destination
has to be replaced by the one in cset 104 (source) to create the result tree. No merge is needed, but
there is a replacement of one revid by another one. That’s why we call it replaced.

• foo.h – copied. Added is surely a better description. We call it "copy" because the revid is copied from
the tree of cset 104 to the result tree.

• cc.h – removed. The file is simply deleted from the result tree.

Directory merges

Directories are first-class citizens
Directories are first-class citizens in Plastic. This means they are versioned in the same way files are.
Plastic can have empty directories because they are just not containers of files but entities on their own.


Git, in contrast, can’t have empty directories in the tree because directories are not versioned as
such, they are just paths needed to host files, but nothing else.

Here is a simple tree of a given changeset:

3

/

src/inc/

bar.c foo.cbar.h

1

4

7 10

11

12

What does the actual data of revision 10 look like? Revision 10 belongs to a file named foo.c. Let’s see
what its associated data looks like:

178 | Merge and conflict resolution

Blob for revid 10

int calc_foo(int x, int y)
{return x * y;
}

10

compression: none

segment: 0

last: true

type: data

The image shows the contents of the associated blob plus its metadata. As you can see, this small
fragment of text is not compressed, and since it is tiny, it is the segment zero (we split large files into
compressed segments of 4MB each).

Now, what is the data of revision 11? This revision is a directory. So, what’s the actual data of a directory?
You are about to see one of the key data structures that supports the Plastic merge power ὠ�.

revid: 07 itemid: 100 chmod: 644 name: bar.c
revid: 10 itemid: 101 chmod: 644 name: foo.c

Blob for revid 11
11

compression: none

segment: 0

last: true

type: tree

Look at the image carefully. The data of a directory are the names (plus some metadata) of the files it
contains. This has a profound implication on how Plastic works and merges directories. Files don’t have a
name, they are not even "aware" of their name because directories hold the names. This is going to be
key in how directory merges are handled.

Suppose we want to rename src/foo.c into src/boo.c. What will the resulting tree look like?

Directory merges | 179

4

/

src/inc/

bar.c boo.cbar.h

1

4

7 10

13

14

revid: 07 itemid: 100 chmod: 644 name: bar.c
revid: 10 itemid: 101 chmod: 644 name: boo.c

Blob for revid 13
13

compression: none

segment: 0

last: true

type: tree

Exactly. When you rename boo.c, the revision of boo.c doesn’t change. What changes is its container
src/. So, a new revision of src/ is created but not a new one of boo.c. src/ doesn’t know its name either,
its parent (/ in this case) holds its name.

Let’s now see what happens if we decide to move /src/boo.c to /inc/boo.c:

180 | Merge and conflict resolution

5

/

src/inc/

bar.cboo.cbar.h

1

15

710

14

16

revid: 07 itemid: 100 chmod: 644 name: bar.c
revid: 10 itemid: 101 chmod: 644 name: boo.c

Blob for revid 14
14

compression: none

segment: 0

last: true

type: tree

revid: 07 itemid: 100 chmod: 644 name: bar.c
revid: 10 itemid: 101 chmod: 644 name: boo.c

Blob for revid 15
15

compression: none

segment: 0

last: true

type: tree

boo.c

10

Again, boo.c won’t change, only its source and destination directories will.


In Plastic, when we show the history of a file, we show its moves. We store some extra metadata
with info about the moves to explain history to users. In reality, the history of a file doesn’t change
when you move it to a different location because new revisions aren’t created for the file.

Diffing moves
An essential part of merge calculation is diffing trees, as we saw in the previous sections. Here, I’d like to
explain how moves are calculated between any two different trees and how the metadata helps find
these moves.

Suppose we have a tree similar to the previous section, and we want to calculate the diffs between
changesets 12 and 28.

The operations that happened in the changes between the two were a move of /src/boo.c to /inc/zoo.c
and then a change in the new /inc/zoo.c. I describe the two operations in the figure for the sake of
clarity. This doesn’t mean both happened in changeset 28. They could have happened somewhere in
between the two.

Directory merges | 181

28

/

src/inc/

bar.czoo.cbar.h

3

87

786

88

89

12

/

src/inc/

bar.c boo.cbar.h

1

4

21 10

22

23

C /inc/zoo.c

M /src/boo.c /inc/zoo.c

When Plastic takes two trees to diff, it starts walking the destination and finds matches in the source.
Destination is 28 and source is 12.

The actual result is as follows:

diff

/

src/inc/

bar.czoo.cbar.h

3

87

786

88

89

boo.c

10

itemid: 101 itemid: 101

A D

Basically, the diff finds that:

• /inc/zoo.c was added.

182 | Merge and conflict resolution

• /src/boo.c was deleted.

The next phase in the diff is trying to pair added and deleted to find moves. In this case, the itemid
matches, clearly a move between /src/boo.c and /inc/zoo.c.

Pay attention to the following: The revision ids don’t match. Since zoo.c was modified between the
changeset 12 and 28, its revid is now 86 while it was revid 10 in the origin src/boo.c. So revid alone is not
enough to match moves. That’s why Plastic uses an itemid to clearly identify elements.

The concept of the itemid is crucial in Plastic because it is key for move tracking. It is certainly costly to
maintain, but the results pay off because merging moved files and directories becomes straightforward.

For instance, the same logic applies if, instead of moving a file, we move a directory to a different
location:

28

/

src/inc/

bar.czoo.cbar.h

3

87

786

88

89

itemid: 47

itemid: 47

A

D

31

/

src/

inc/bar.c

zoo.cbar.h

3

87

7

86

88

89

diff

/

src/

inc/bar.c 87

7

91

92

inc/ 87

As you can see in the figure, the diff finds /inc as deleted and then /src/inc as added but it can pair
them as a move since they have the same itemid. I didn’t draw the children of the moved directory in the

Directory merges | 183

diff tree because there are no changes and the algorithm prunes the walk when there are no more
differences. In this case, the diff is even simpler because the revids also match, but of course, it would
work perfectly too if the revision id of the directory changed.

Plastic vs. Git
The underlying structure of Git is very similar to what I described here and in "Directories are first
class citizens" except for an important difference: Git doesn’t use item ids. It doesn’t use revids
either, but it uses SHAs (a hash of the file’s content) for the same purpose. What does this mean,
and how does it impact merge resolution? Consider one of the previous examples where a file was
moved, renamed, and modified. Git finds the added and the deleted as Plastic does, but then it
has to guess to match the pairs instead of just looking at the itemids. If the file didn’t change
during the move, the added/deleted would be easily paired because they have the same SHA. But
if the file was modified, Git has to diff its content to figure out if they still are similar up to a given
percentage to conclude they are the same file.

In a directory move, things get more complicated because Git normally has to pair the files inside
the directory instead of the directories themselves. In fact, in the example of the directory move,
while Plastic shows:

mv /inc /src/inc

Git will show:

mv /inc/bar.h /src/inc/bar.h
mv /inc/zoo.c /src/inc/zoo.c

Which can get complicated if, instead of two files, it was a full tree with hundreds of files in it.

Merging moved files
All the hassle of dealing with itemids pays off to perfect merging moved files.

Moving files and directories are essential for refactoring. Not only that, in some programming
languages, directories are directly associated with namespaces, and a change in a namespace can lead
to tons of directory renames. It is also possible that restructuring a project is good for keeping the code
clean, readable, searchable, and ultimately findable.

One approach is to postpone those changes until "we find a moment of calm with fewer concurrent
changes". This never happens. The reality is that if you can’t refactor your code and directory structure
while you continue with normal development, you never will. It is the same as postponing code reviews
or any other key practices. You better have the practices and tools to do them daily, or you will postpone
them indefinitely.

I hope I explained clearly how important it is to freely and safely move files around. That being said, let’s
see a couple of scenarios in action.

184 | Merge and conflict resolution

main

B

task

D

S

R

C /zoo.c

M /boo.c /zoo.c

C /boo.c

/zoo.c
merged with the
changes from both
contributors

The example in the figure is the canonical "merge a moved file" sample:

• One developer modified /boo.c

• While the other renamed it to /zoo.c and then modified it

The merge result must keep the rename /zoo.c and combine the changes made by the two developers.

In the previous sections, we saw how Plastic diffs the trees to find actual conflicts and a valid common
ancestor to merge them. As you now know, the actual names are not relevant for the algorithm since it
can identify files and directories by itemid. That’s why this case is straightforward in Plastic; it can safely
merge zoo.c because it knows it is the same item regardless of the names it has on both contributors.

Let’s now complicate the scenario a little bit by involving directories.

main

B

task

D

S

R

C /core/render/foo.c

M /src /core/render

C /src/foo.c

/core/render/bar.c
merged with the changes
from both contributors

M foo.c bar.c (inside /core/render)

Let’s examine this second scenario:

Directory merges | 185

• The first developer modified /src/foo.c

• The second developer moved and renamed /src to /core/render (moved inside /core and then
renamed it from src to render)

• Then, they modified /core/render/foo.c

• Finally, they renamed foo.c to bar.c.

And again, as convoluted as the scenario might sound, Plastic only finds a conflict in /core/render/bar.c
because it knows the two contributors modified the item. So, it will run a 3-way merge to resolve
possible conflicts while keeping the directory and file moves in the result.

Fear of merge
Subversion, CVS, and some other now defunct or ancient version control systems used to be very
bad dealing with moved and modified files. When we made the first demos of Plastic in 2006,
some developers couldn’t believe it was safe to rename a file while someone else was modifying it.
They had many bad experiences with SVN and had decided never to try anything like it again.

Change/delete conflict
Change/delete conflicts happen when someone modifies a file while someone else deletes it in parallel.

Since the new change can be significant, Plastic warns of the situation during the merge so the
developer can decide whether the change should be preserved or discarded.

The simplest scenario is as follows:

main

B

task

D

S

R

D /boo.c

C /boo.c

Directory conflict
Ask what to keep:
delete or change

• Developer 1 modifies /boo.c

• Developer 2 deletes /boo.c.

Plastic warns of the case during the merge and lets you recover the change discarding the deletion if
needed.

A more complex case involves a deeper directory structure and not-so-direct deletions. Look at the
following figure:

186 | Merge and conflict resolution

main

B

task

D

S

R

D /render

C /src/render/opengl/boo.c

Directory conflict
Ask what to keep:
delete or change

• One developer modified /src/render/opengl/boo.c

• The other deleted /render.

Plastic will detect a conflict and ask you what to do.

Of course, this type of conflict will only be detected if actual elements are in danger of being lost. I mean,
consider the following case where we have a directory tree as follows:

.
\---src
 \---render
 +---opengl
 | boo.c
 | render.c
 \---directx
 render.c

Then, the developer working on the branch named task does the following:

mv /src/render/opengl /src/opengl +
mv /src/render/directx /src/directx +
rm /src/render

In this case, there won’t be a merge conflict since boo.c was "saved" during the moves done previous to
the deletion of /src/render, so the changes made in main will be applied cleanly.

Add/move conflict
Add/move conflicts happen when you add a file or directory, and concurrently someone moves an
existing file or directory to the exact location where you added the file. Again, Plastic will help you solve
the conflict.

Directory merges | 187

main

B

task

D

S

R

A /bar.c

Directory conflict
Keep /bar.c from main
Keep /bar.c from task
Keep both renaming bar.c from main

M /foo.c /bar.c

The example in the figure matches what I described before:

• Developer on main adds bar.c

• Meanwhile, the developer on task decides to move foo.c to bar.c.

Here itemids come to the rescue. Plastic is not fooled by the fact that the files have the same name. It
knows they are different files because they have different itemids. So, Plastic will ask you to keep one or
the other or to keep both by renaming one of them.

I won’t describe a more complex case with directories because it will be the same as we just saw. Finally,
a combination of files and directories where names collide is also possible (suppose the added bar.c was
a directory), but the resolution will be the same as described above.

Alternative resolution
A possible alternative solution for the first scenario involves the added bar.c and the renamed
foo.c to bar.c, which is merging the changes to keep a single bar.c. It would be a 2-way merge
since there is no possible common ancestor. We have never implemented this alternative because
we consider that the user typically wants to discard one of the files or rename one of them and
keep both. But, this is something we’ve considered several times in the past, so if you think you
need this option, please let us know.

Move/delete conflict
Move/delete conflicts happen when you move a file or directory to a different location, and concurrently
someone else deletes the destination directory. If not handled correctly, a merge of the concurrent
changes could lead to valuable data loss.

Let’s see an example:

188 | Merge and conflict resolution

main

B

task

D

S

R

D /foo.c

Directory conflict
Keep source changes (preserve delete
and discard the move)
Keep destination changes (preserve
the move and discard the delete)

M /foo.c /bar.c

• You move /foo.c to /bar.c

• In parallel, your colleague deletes /foo.c in a different branch.

When you merge his branch into yours, Plastic will warn you about the move/delete conflict and will let
you go ahead and remove the file or keep the delete.

This type of conflict makes more sense when the scenario involves directories. Look at the following
figure:

main

B

task

D

S

R

D /core/utils

Directory conflict
Keep source changes (preserve delete
and discard the move)
Keep destination changes (preserve
the move and discard the delete)

M /sum.c /core/utils/math/sum.c

• One developer decides to move /sum.c into the directory /core/utils/math because he thinks the
code makes more sense there.

• In parallel, someone did a cleanup and deleted the utils directory (possibly moving files outside to
refactor the code structure, but of course not "saving" sum.c because it wasn’t inside /core/utils
when they performed the cleanup).

When the branches get merged, Plastic will detect the move/delete conflict, warn you about the situation
and let you decide whether you want to keep the delete and lose the moved file, or undo the deletion.

Suppose you undo the delete of /core/utils during the merge. In that case, chances are you will
"restore" many other files and directories inside utils. But, they will stay in your workspace after the
merge, and you will have the chance to delete again what you don’t need, but also to preserve sum.c
which is what you wanted.

Directory merges | 189

Evil twin conflict
Evil twin conflicts happen when two different items collide in the exact location. I don’t remember where
the dramatic name of "evil" came from. Not sure if we took it from Clearcase, if we found it somewhere
else or if we came up with it.

Anyway, the conflict is easy to understand with an example:

main

B

task

D

S

R

Evil Twin directory conflict
Keep both renaming /src/Sum.java in main
Keep source (deleting dst)
Keep destination (deleting src)

A /src/Sum.java

A /src/Sum.java

• Developer 1 adds /src/Sum.java in branch main.

• Meanwhile, developer 2 also adds /src/Sum.java in branch task.

The merge will detect an evil twin conflict because the directory can’t have two items with the same
name.

Plastic proposes these resolution options:

• Rename /src/Sum.java in destination (main in this case) to a different name and preserve the two
files.

• Keep the file coming from source, deleting the one that was already in destination.

• Keep the file coming from destination, ignoring the one from source.



Do you miss a 2-way merge and unify history?

There could be a different possibility to solve this conflict: Somehow unifying the contents of
/src/Sum.java. For example, we could keep the itemid from the file created on main but merge the
contents with the file coming from task. It would be a 2-way merge since there is no possible
common ancestor.

We considered this option several times over the years, but never implemented it since the default
action users normally take is to keep both because they realize they really wanted to have two
different files and the name collision was not on purpose.

We will keep an eye on this conflict resolution and eventually add a 2-way merge as a solution if
users find it useful.

As a temporary workaround, it is possible to keep the two files, use a merge tool capable of doing 2-
way merge (like Kdiff3), merge them, then delete the file you don’t want before checkin.

Moved evil twin conflict
A moved evil twin conflict happens when you move two files or directories to the same location in
different branches, and you try to merge them. The directory can’t contain two items with the same

190 | Merge and conflict resolution

name, and a conflict is raised.

Check the following example:

main

B

task

D

S

R

Moved Evil Twin directory conflict
Keep both renaming Timer.cs in main
Keep source (deleting dst)
Keep destination (deleting src)

M /aux/Timer.cs /src/time/Timer.cs

M /core/perf/TimeTrack.cs /src/time/Timer.cs

• One developer decided to move /core/perf/TimeTrack.cs to /src/time/Timer.cs.

• Meanwhile, on a different branch, a different developer moved /aux/Timer.cs to /src/time/Timer.cs.

This scenario usually happens when similar functionality exists in two different places (like the case
here).

In this type of conflict, Plastic provides three options:

• Keep both files by renaming the one on destination, main in this case, to a different name.

• Keep only the one coming from the source, deleting the one in the destination.

• Keep the one in destination ignoring the one on source.

As with regular evil twins, it could be interesting to do a 2-way merge if we know the files are the same
although created separately. If you think this is something interesting, please let us know.

Directory merges | 191

Itemids and Evil Twins
As you know already, Plastic identifies each file and directory by an itemid. The itemid is vital for
calculating diffs and correctly tracking moves. Most of what makes Plastic merge more powerful
than Git and other version control systems lies in the precise tracking allowed by itemids.

There is a downside, though. Every directory/file you add to version control has its itemid even if
you mistakenly added the same file twice. Consider the typical evil twin case where you do as
follow:

1. Add /AssemblyInfo.cs in main/task001

2. Add the same /AssemblyInfo.cs in main/task002

When you merge the two branches, you probably expect Plastic to be clever enough to know they
are both the same file and that it doesn’t make any sense to consider them as different items. But
Plastic throws an evil twin conflict.

There will be cases where this is exactly the behavior you expect and appreciate because the team
mistakenly added two variations of the same file in the same location.

But there will be others where it will simply hit you.

We are considering adding both a 2-way merge solution for this case, and a "unify item" where
after the merge, the histories are somehow unified (which is not that straightforward because it
would mean rewriting the previous history).

Divergent move conflict
This is my favorite merge conflict and the one I often use in demos because I think it demonstrates the
strength of the Plastic merge engine.

As usual, let me explain it with a graphic:

main

B

task

D

S

R

Divergent Move directory conflict
Keep the rename to boo.c
Keep the rename to bar.c

M /foo.c /bar.c

M /foo.c /boo.c

• One developer decides to rename foo.c to boo.c

• In a different branch foo.c is renamed to bar.c

Plastic detects the conflict on merge and asks which name you want to keep.

192 | Merge and conflict resolution

Things can get more complex if we involve directories together with concurrent changes on a file:

main

B

task

D

S

R

Divergent Move directory conflict
Keep the move to /render/opengl
Keep the move to /engine/ogl

And then solve the conflict in mesh.cpp

M /render/gl /render/opengl

M /render/gl /engine/ogl

C /render/opengl/mesh.cpp

C /engine/ogl/mesh.cpp

• Here first /render/gl was moved to /render/opengl, and then mesh.cpp modified

• In parallel /render/gl was moved to /engine/ogl and again mesh.cpp modified

Plastic will first ask you to decide where to put the gl directory. For example, do you want to rename it
and keep it under engine? Or move it to /engine and rename it to ogl?

And, once the directory conflict is solved, Plastic will ask you to merge the mesh.cpp file.

Why do I like this type of conflict so much? Well, because it turns a complex (although obvious) scenario
into something fully manageable while other version control systems (Git among them) will turn this into
a complete nightmare. What Git does is duplicate the directory and all its contents, which makes
unifying mesh.cpp extremely complex and unlikely to happen, which usually leads to losing changes.

Cycle move conflict
Cycle moves are not common, but they can happen if you move one directory inside another (src into
code/src). In the meantime, somebody else performs the opposite operation (code into src/code).

Directory merges | 193

main

B

task

D

S

R

Cycle move directory conflict
Which of the 2 moves do you

want to keep?

M /src /code/src

Imagine we have this tree
/
/src
/code

M /code /src/code

When Plastic detects this case, it asks the user which move to keep because it can’t keep both.

Internally, it could create a infinite loop where one is a child of the other recursively (not a good thing).

Some version controls duplicate the trees, so you end up with /src/code and /code/src and all the files
duplicated: It doesn’t look like a good conflict resolution strategy ὠ�.

Conflict resolution order – directories before files
When you solve a complex merge in Plastic, you’ll always have to solve directory conflicts (structure
conflicts if you prefer) before file conflicts.

This is because you need to have a proper structure before "plugging" the files into it. So, suppose the
directory structure needs you to solve whether you want to keep the rename from bar.c to foo.c or
boo.c. In that case, you first have to solve that before merging the file’s content.

Both the command line and the GUIs follow this order to solve conflicts.

The following screenshot taken on Windows (macOS and Linux follow a similar pattern) shows a
divergent move directory conflict followed by a file conflict on the same file; you first have to solve the
directory conflict and then merge the file.

194 | Merge and conflict resolution

Automatic resolution of directory conflicts
For each type of directory conflict, choose whether the source or the destination contributor should be
automatically selected to resolve the conflict. See the following example:

cm merge cs:2634 --merge --automaticresolution=eviltwin-src;changedelete-src

The above merge operation from changeset 2634 resolves the eviltwin and changedelete conflicts by
keeping the source (-src) contributor in both cases.

• A -src suffix after a conflict type tells the merge command to keep the source contributor changes.

• A -dst suffix will save the destination contributor changes.

Here is the complete list of conflict types the merge command supports:

• movedeviltwin

• eviltwin

• changedelete

• deletechange

• movedelete

• deletemove

• loadedtwice

• addmove

• moveadd

• divergentmove

• cyclemove

• all

The all value overrides the other options. In the following example, eviltwin-dst will be ignored:

cm merge br:/main/task062 --merge --automaticresolution=all-src;eviltwin-dst

Directory merges | 195

Merge from and merge to
The typical way merge in version control is as follows: You put your workspace pointing to the result,
and then you merge from source. That’s why we call it "merge from".

It is the most common type of merging because it involves you, the developer, getting merged changes
into your workspace, reviewing them and testing them before you checkin.

But, there is a different type of merging in Plastic that doesn’t require a workspace; it can be done
entirely on the "repository side". It is useful under many different circumstances but especially with CI
systems.

Years ago, it was very common for a developer to test their changes after doing a merge and before
doing the checkin. Today, thanks to the ubiquity of CI and DevOps, it is more common to find a bot of
some kind performing the merges.

In those cases, having a workspace can even be a burden because it means having extra working copies.
By the way, the workspaces will be needed to build the code, but the merge step can be triggered by a
different machine where having a working copy would be just an extra burden.

"Merge to" is also very useful as developers when you want to solve a merge conflict without having to
switch to the destination branch, which can save quite a bit of time.

The figure shows the key differences between the "merge to" and "merge from" operations. We also call
"merge to" a "workspace less" or "server-side" merge.

196 | Merge and conflict resolution

B

main

D R

scm131

S

merge-from

B

D

S

R

merge-to

main

scm141

scm121

Removing changes – subtractive merge

What is a subtractive merge
Subtractive merge is a powerful merge operation that allows you to remove a given change while
preserving the rest of the changes made later.

Consider the following scenario:

90

main

91 92 93 94 95

You need to get rid of the changes made in changeset 92, but the others are perfectly fine.

Removing changes – subtractive merge | 197

Deleting 92 is not an option since, as we saw in "Delete empty branches only" it is only possible to delete
92 if you delete 93, 94, and 95.

Subtractive merge comes to the rescue here as follows:

90

main

91 92 93 94 95 96

96 = 91 -92 + 93 + 94 + 95

By "subtracting" 92, you create a new changeset 96 that only removes the changes in 92, and keeps the
ones done later.

When should you use subtractive merge?
A simple rule of thumb: Don’t abuse subtractive merge. If you find many red lines in your repo (that’s
how we render subtractive), be very careful. Subtractive is a tool to handle exceptions, not something to
use daily.

This is because subtractive merge links are informative: They help you understand what happened, but
they are not actively considered for merge tracking. And, you already know why merge tracking is so
important to avoid issues. So, use it wisely.

How to undo a merge
Consider the following scenario: A couple of new branches were merged to create a new version, but
then after some more intensive testing or during internal deployment, you detect the release is broken
and figure out that branch bug088 is the one that introduced the bug:

198 | Merge and conflict resolution

131

main

150 155

140

main/bug088

142

main/bug089

143

BL132-private

148

How can you proceed here?

My recommendation, under normal circumstances, would be to implement a new task to fix the issue
and solve the broken build:

131

main

150 155

140

main/bug088

142

main/bug089

143

BL132-private

148

main/bug090

155

BL133-public

156

Removing changes – subtractive merge | 199

I like this solution because it doesn’t introduce an exception case. It simply sticks to the same "task
branch" and regular DevOps cycle. There is no manual intervention needed, just a new task branch that
will be tested and merged by the CI system or a Plastic mergebot, and everything will proceed as usual
even if we are fixing an unusual emergency provoked by a broken build.

Well, this is the "Subtractive merge" section so you most likely expect me to use a subtractive merge to
solve the scenario, right?

Here we go:

131

main

150 155

140

main/bug088

142

main/bug089

143

BL132-private

148

157

The other alternative is to take advantage of subtractive merge to remove the changes made on bug088
(we are subtracting the changeset result of its merge, so all its changes will be gone) while preserving
the later bug089 which was perfectly fine.

Re-merging a branch that was subtracted
Subtractive is powerful, but it is not a beginner’s tool.

In the purest "task branches" philosophy, you would abandon bug088 and create a new task to fix the
new issue. But, sometimes that’s not doable because it is better to fix whatever happened to bug088 and
merge again.

And it is the "merge again" that is worth a section since it is far from straightforward.

Let’s continue with bug088 and fix the issue we introduced there by doing a new checkin on that branch.
Then, it would be possible to merge it back, right?

200 | Merge and conflict resolution

Wrong.

131

main

150 155

140

main/bug088

142

main/bug089

143

BL132-private

148

157

160

R

This is NOT the right way to re-merge
because you'll only get the changes
done in 160, but ignoring 143 and 140

Now, you have an excellent opportunity to practice all the newly gained expertise in merge tracking.
What happens when you merge 160 into 157?

Well, first 143 will be the common ancestor, and only the changes made in 160 will be merged. It means
you are not really introducing all the changes done in bug088, but only the new changes in 160.

This is because the subtractive merge link is informative and not part of the merge tracking calculation.
So it is completely ignored.

What is the right way to do it?

Pay attention to the following figure:

Removing changes – subtractive merge | 201

131

main

150 155

140

main/bug088

142

main/bug089

143

BL132-private

148

157

160

R

1
2

This is correct:
1) Cherry pick 150 to reintroduce the
changes => ignoring traceability!
2) Now merge from bug088 again

To "reintegrate" a previously subtracted branch with newer changes, you have to:

1. Cherry pick the subtracted changeset to reintroduce the changes. Important: Ignore traceability in
the cherry pick, or the merge won’t happen. This is because you are cherry picking from 150 to a child
changeset of 150. So, usually, the merge wouldn’t have to happen.

2. Then merge the branch again.

The procedure is not hard, but you must know how to use this feature properly. I hope the explanation
helped you master subtractive.

Cherry picking
Cherry picking is a way to merge just the changes made on a changeset or set of changesets instead of
using the regular merge tracking to decide what needs to be merged.

There are several variations of cherry picking that we’ll be seeing in a minute.

Cherry picking doesn’t alter merge tracking, so be very careful and don’t overuse it because it’s a tool to
handle exceptions, not to be used frequently.

Cherry pick a changeset
When you cherry pick a changeset, it means you want to apply the changes made in this changeset to a
different branch. It is like applying a patch just taking the changes made in the changeset.

The following figure explains the case: By cherry picking changeset 15 to branch maintenance-3.0, you
are just applying the changes made in 15 to the branch.

202 | Merge and conflict resolution

10

main

11 13 15 16 17

12 14

maintenance-3.0

R

What would happen if you merged from changeset 15 instead? This is very important to differentiate
because users often get confused about the difference between cherry pick and merge. Look at the
following figure:

10

main

11 13 15 16 17

12 14

maintenance-3.0

R

A merge from changeset 15 would apply the changes made in 11, 13, and 15, not just the ones in 15 as
cherry pick does. That’s the key difference between cherry pick and merge.

Branch cherry pick
We can also apply a cherry pick of a whole branch instead of just a changeset.

Consider a scenario like the following: we want to cherry pick main/task12 to main instead of merging it.

Cherry picking | 203

1

main

2 4 7

3 5

main/task10

R

main/task10/task12

6 8 9

The cherry pick will take the changes made on changesets 6, 8, and 9 into main, while the merge would
also bring the changes made in 3 and 5 in the parent branch main/task10.

To put it in more formal terms (which I bet some of you will appreciate), the merge in the figure
considers the (5, 9] interval; changesets 6, 8, and 9 will be "cherry picked".

Branch cherry picking can be very useful under certain circumstances when you want to pick a few
changes instead of the whole history.

Interval merge
Branch cherry pick is indeed a subset of the interval merge, where the topology of the branch sets the
interval.

The figure shows an interval merge of (5, 9] which means the changes made in 6, 8, and 9 will be cherry
picked to main.

1

main

2 4 7

3 5

main/task10

R

6 8 9

204 | Merge and conflict resolution

Conflicts during checkin – working on a
single branch
There are cases where teams choose to work on a single branch because of different reasons. It can be a
pair of developers collaborating on a single branch at the early stages of a new project or feature, or
maybe the entire team working together on main because they have unmergeable files that they need to
lock.

Let me show you how a possible scenario might evolve:

10

main

Ruben working on main@fly@skull:9095 Dani working on main@fly@skull:9095

11

10

main
11

It all starts with Ruben and Dani working on the main branch. Each of them works on their workspace, so
they have independent local working copies. And they are both synced to changeset 11. The houses
represent where their workspaces are.

Then both Ruben and Dani start making changes. As you can see, they modified two different files.

10

main

11

Ruben working on main@fly@skull:9095 Dani working on main@fly@skull:9095

10

main

11

C /Main.cs C /Class1.cs

Ruben is the first to checkin. He created changeset 12 when he checked in the change to Main.cs.

Now, Dani is ready to checkin Class1.cs too, but the repo is different from Ruben’s. There is a new
changeset 12 that is in potential conflict.

Conflicts during checkin – working on a single branch | 205

10

main

11

Ruben working on main@fly@skull:9095 Dani working on main@fly@skull:9095

C /Main.cs

12

10

main

11

C /Class1.cs

C /Main.cs

12 R

The Plastic merge algorithm finds a potential conflict from the "topological" point of view since the
changeset 12 is now in main and can collide with the local changes made by Dani.

In this case, the merge algorithm is smart enough to discover that the changes don’t collide; they
changed different files.

Then, the checkin performs what we call an "update-merge"; the Dani’s workspace is updated to the
latest during checkin, so his home would virtually go to 12, but then his changes (that do not collide with
the ones coming from main at 12) are kept as if they were done on 12 (it is not a Git rebase, but some of
the ideas behind are similar as you can see in "Plastic rebase vs. Git rebase").

10

main

11

C /Main.cs

12

13

C /Class1.cs

Dani working on main@fly@skull:9095

The "update-merge" leaves a linear history without merge links, something we found is best in this
scenario since users working on a single branch normally get confused by merge lines.

What would happen if they had both modified Main.cs instead? The following figure illustrates the case:

206 | Merge and conflict resolution

B

D

S

base

Dani working on main@fly@skull:9095

10

main

11

C /Main.cs

C /Main.cs

12 R

destination

source

Now, Main.cs requires a real merge, so the regular merge algorithm takes control. As you can see, we
have a base and then destination (12) and source (our local change) contributors, like in any regular
merge.

Once Dani checkins the result of the merge, the Branch Explorer will be as follows:

Dani working on main@fly@skull:9095

10

main

11

C /Main.cs

C /Main.cs

12

13

And this can be confusing to some users who don’t understand why a merge link happens inside a single
branch. But, the reason is clear. A merge from 11 and some changes happened to create 13.

Conflicts during checkin – working on a single branch | 207

Finally, I’d like to explain what happens when the merge during checkin involves more files than those in
conflict because this is a subject that causes confusion quite often. Check out the following scenario: my
local change is just Main.cs, which was also changed by someone else in changeset 12. But, in changeset
12, three other files where changed. They are not in conflict, but they need to be downloaded to my
workspace as part of the merge.

10

main

11

C /Main.cs

C /Main.cs

12 R

C /foo.c

C /bar.c

C /zoo.png

The sequence of steps is as follows:

• You want to checkin, and then Plastic warns you there are colliding changes.

• Then you go and merge Main.cs.

• You finish the merge and then check the status of your workspace.

• And then you see zoo.svg, bar.c and foo.c as "checkouts" in your workspace.

"Why are they marked as "checkedout" if I never touched these files" – some users ask.

Well, you didn’t change them, but they were involved in the merge. That’s why they are marked as
checkouts. For more info about the status of the files during a merge, see "Plastic merge terminology".

208 | Merge and conflict resolution

Simplifying merges on a single branch
We have plans to greatly simplify merges on single branches, so expect changes in how they are
currently handled.

Many users reported that seeing merge links in merges that happen as a result of a checkin on a
single branch are confusing, and they would prefer not to see them.

Our goal is to do the following:

• If a merge is needed during checkin, merge the involved files but alter merge tracking. The
destination will always be the head of the branch at the moment of the merge, and the base
will be the parent of the local changes.

• Do not show the newly downloaded elements as "part of the merge" (the files coming from the
head of the branch) since it is often very confusing for users.

We already started part of this effort with Gluon, the GUI, and CLI to deal with partial workspaces.
Check this blogpost [https://www.plasticscm.com/download/help/gluoncanmerge] for more info.

Locking: avoiding merges for
unmergeable files

Merging binary files
What happens if two team members modify an unmergeable file concurrently? Suppose you have a .jpg
file and two artists made a change to it concurrently.

10

main

11

C /ironman.jpg

C /ironman.jpg

13

12

R

Binary file conflict
The binary merge tool will let you:
1) Keep the change on 13 discarding 12
2) Or keep 12 discarding 13

Unless you have an special 3-way merge tool
for JPGs, one set of changes will be lost :-(

Plastic comes with a binary merge tool that is invoked only if a file is detected as binary (Plastic bases its
decision on the file extension for known types, the filetypes.conf config file, and an algorithm that
reads the first bytes of the file and figures out if it is binary or text. There is also a way to configure a
mergetool based on the file extension). So, in this case, since ironman.jpg is detected as a binary, it will
invoke the binary merge tool, which will only let the user choose which contributor to keep and which
one to discard.

Since it is a jpg file, the binary merge tool can show a preview to help you with the decision as follows:

Locking: avoiding merges for unmergeable files | 209

https://www.plasticscm.com/download/help/gluoncanmerge

While it shows you the common ancestor and the two contributors, it cannot actually merge the pictures
to produce a new one, and one of the changes will be discarded.

If the file in conflict was not an image, the binary merge tool won’t be able to create a preview (unless
you plug a preview generator, but that’s a different story [https://www.plasticscm.com/download/help/
custombinarypreview]). What you would see in this case would be something as follows:

Anyway, what is clear from this example is that while there is a way-out during merge, it is not a good
idea to discard work trying to work in parallel in files that can’t be merged.

Lock to prevent concurrent changes
Plastic can be configured to lock certain files and prevent concurrent changes (check this
[https://www.plasticscm.com/download/help/locking] for more info).

I will explain how it works and what the team needs to do to take advantage of this feature.

First, the sysadmin needs to configure locking on the server for certain file extensions. In my case, I’m
going to consider that all .jpg files are locked on checkout.

210 | Merge and conflict resolution

https://www.plasticscm.com/download/help/custombinarypreview
https://www.plasticscm.com/download/help/locking

Then, let’s consider the following starting point:

11

main

Violeta working on main@fly@skull:9095 Carlos working on main@fly@skull:9095

12

11

main
12

$ cm co /ironman.jpg

Lock List

/ironman.jpg violeta

L

Violeta and Carlos are working on the same project. Violeta decides to checkout the file ironman.jpg. In
the figure, the checkout is done using the command line, but of course, the same operation can be done
from a GUI.

Checkout is an operation to tell Plastic "I’m going to modify this file". Usually, it is not needed because
you can modify the file without telling Plastic about it, and it will find out later.

But, checkout works differently for files configured to be locked. When you checkout ironman.jpg, since it
is configured to be locked, a new entry is created in the server lock list, meaning that ironman.jpg can’t
be modified concurrently.


To take advantage of locks, team members need to checkout the files. If they forget about it, then
locks won’t be obtained or requested. There won’t be any way to prevent unmergeable files from
being modified concurrently.

In our example, Violeta correctly checkedout ironman.jpg, and the file was added to the server lock list. I
just added the file’s name to the list in the figure above, but in reality, info about the itemid is also added
to identify the locked files properly.

Suppose that now Carlos tries to checkout ironman.jpg too:

11

main

12

Violeta working on main@fly@skull:9095 Carlos working on main@fly@skull:9095

11

main

CO /ironman.jpg

$ cm co /ironman.jpg

Error => ironman.jpg is
already locked

12

Locking: avoiding merges for unmergeable files | 211

The checkout operation fails because Violeta already locks the file in a different workspace. This is how
we can prevent unmergeable files from being wrongly modified concurrently.

Later, Violeta finishes her work and checkins the changes. A new changeset 13 is created on main, and
the entry in the lock list is now cleared.

11

main

12

Violeta working on main@fly@skull:9095

C /ironman.jpg

13

$ cm ci /ironman.jpg

Lock List

/ironman.jpg violeta

L

Now, Carlos is free to lock ironman.jpg to perform changes, correct? Not quite yet:

Carlos working on main@fly@skull:9095

11

main

$ cm co /ironman.jpg

Error => ironman.jpg can't be
locked because it is not the
latest revision!

12

13

Carlos is still on changeset 12 in his workspace, so he can’t lock the file because, while there aren’t locks
for ironman.jpg held at this point, his revision is not the latest.

Plastic ensures you can only lock the latest version of a file otherwise concurrent modification wouldn’t
be prevented.

212 | Merge and conflict resolution

Then, Carlos decides to update his workspace to changeset 13, and he is finally able to lock the file.

Carlos working on main@fly@skull:9095

11

main

$ cm co /ironman.jpg

13

12

Lock List

/ironman.jpg carlos

L

This way the changes in the jpg file will be serialized since nobody will be able to make concurrent
modifications.

Locks only work in single branch
The Plastic locking system only works well if you work on a single branch. This is because we didn’t
implement the ability to coordinate locks among branches. You can easily force the situation where you
held a lock on a branch, so nobody else can modify the file, then checkin. Of course, at this point,
someone else could lock the file on a different branch. But this won’t prevent concurrent modification.

10

main

11

C /ironman.jpg

13

task120

CO /ironman.jpg

In the figure, someone created changeset 13 after locking ironman.jpg on main.

Later someone creates a branch starting from changeset 11 and locks the file (checkout). Their version of

Locking: avoiding merges for unmergeable files | 213

ironman.jpg is the latest on their branch, so they can perform the lock, but obviously we are not
preventing merges since this is in fact a concurrent modification.

So, keep in mind that locking is very useful to deal with unmergeable files, but you need to restrict its
use to single branch operation.

A glimpse to the future: Travelling locks
At the time of this writing, we are considering a great improvement in the locking system:
Travelling locks.

What if you could lock a file on a branch and specify that it shouldn’t be unlocked until it reaches
main on a given server?

This will enable to safely modify unmergeable files in a branch, even make several checkins on the
branch. It will even allow working on different repos and still hold the lock until the revision
reaches main on the central server. At this point, the lock will be freed.

The solution is not simple since there are many possible lock propagation scenarios (what if you
branch off from where you acquired the lock and then modified the file again? This would lead to
endless locks that would never be freed if they don’t all end up being merged to main, for
instance), but it is part of our idea to simplify workflows for teams where binaries and assets are
part of their daily workflows.

Plastic rebase vs. Git rebase
We often use the word rebase to refer to a merge from main (or a release branch) to a branch of a lower
hierarchy.

A typical rebase in Plastic is something as follows:

10

main

11 13 15

12 14

task103

16

BL132BL131

You can see how the branch task103 started from BL131 (it was "its base"), and then later we wanted to
update the branch with the latest changes in BL132 (changed the base, so we call it "rebase").

But, if you have a Git background, or simply want to become a master in version control ὠ�, then it is
worth pointing that the term rebase has a completely different meaning in Plastic.

Of course, it is possible to do something as follows in Git:

214 | Merge and conflict resolution

10 master11 13 15

12 14 task10316

BL132BL131

Which would be the exact equivalent to the operation made above in Plastic.

But let’s rewind a little bit to explain the scenario in Git better.

You start working on a branch and perform a few commits on it. And meanwhile, the master branch that
you branched from also evolved.

A masterB D

C E task103

BL131

Then, at a certain point, a new commit is tagged in master, and you want to bring those changes to
task103. One option would be to merge down as we did above.

A masterB D F

C E task103

BL132BL131

But, in Git you can do a "rebase", which is a history rewriting operation. A rebase creates new commits
C' and E', which resemble the changes made in the original C and E but starting from F. Actual file

Plastic rebase vs. Git rebase | 215

merges can happen during the rebase.

The old original commits C and E are left in the repo, but they are now inaccessible and will be removed
in the next repo garbage collection operation.

A masterB D F

C E task103

BL132BL131

C' E' task103


It is discouraged to do a rebase if you’ve already pushed your branch task103 to a public repo
because it will lead to several issues since you later changed the history locally, but propagating the
change to other repos is not that simple. Rebase in Git is an operation meant to be run only locally
and before pushing the commits to a shared location.

So far (I’d never say never), we haven’t implement history rewriting ourselves since we prefer to think of
repos as what happened instead of a rearranged history. Git made rebases super popular, so whether
we implement something similar will only depend on user demand.

One thing to keep in mind is that one of the main reasons to do rebases in Git is to simplify
understanding the changes, because linear history is easier to diff than when changes come from
merges. Keep in mind that:

• Diffing a branch in Plastic is straightforward because Plastic knows where the branch starts and
ends. Knowing where the branch starts and ends is commonly impossible to determine in Git due to
fast-forward merges and the extended practice of deleting branches.

• Git doesn’t provide built-in diff tools. Many third-party tools do a side-by-side diff, but the default
package comes with unified diffs suitable for the command line. Plastic, in contrast, excels in diff
tools (it even comes with built-in SemanticDiff) which makes explaining differences easier. My point
here is that rebase is often needed in Git to workaround with history rewriting what a proper diff tool
can do. In Plastic, a diff will tell you which files and lines come from a merge and which don’t. Check
the following screenshot to see a diff of a branch involving a merge:

216 | Merge and conflict resolution

Learn more about Git vs. Plastic diffing abilities [https://www.plasticscm.com/download/help/
plasticrebasevsgitrebase].

Plastic rebase vs. Git rebase | 217

https://www.plasticscm.com/download/help/plasticrebasevsgitrebase

218 | Merge and conflict resolution

WORKSPACES

The workspace is a central part of the interaction with the version control. It is the directory that you use
to interact with the version control, where you download the files and make the required changes for
each checkin.

In this chapter, we will explore the two different types of workspaces in Plastic: Full workspaces and
partial workspaces. We’re going to delve into how workspaces are configured, how they work, and how
they shape how Plastic works.

Full workspaces vs. partial workspaces
Plastic SCM supports two different types of workspaces:

Full workspaces

Also known as "standard workspaces," "traditional workspaces," "Plastic workspaces," and "classic
workspaces". "Full workspace" is the way to standardize how to refer to them. Full workspaces are in
sync with a changeset at any given point in time. It means the contents you have on disk resemble a
changeset on the server plus any local changes you have made. Full workspaces are suitable for
running merges and are normally chosen by developers.

Partial workspaces

Also known as "Gluon workspaces". We introduced them together with Gluon, the UI and workflow
for non-coders, typically artists in game development. They were built around three key
requirements: Don’t download the entire tree of a changeset, merge is never required, and work in a
per-file basis (being able to checkin even if part of the workspace is out of date with head).

If you didn’t understand part of the previous definitions, don’t worry; the goal of this chapter is to ensure
you master both types. Keep reading ὤ�.

What is a workspace
Imagine you have a repository that looks like the following:

Full workspaces vs. partial workspaces | 219

1

main

2 3

4

main/task2001

5

6

And then, you create a workspace to work on it. A new workspace is initially empty until you run an
update, which is responsible for downloading the files and directories from the repo to your disk.

In our example, imagine we run the following combination of commands:

cm workspace create wk00 c:\users\pablo\wkspaces\wk00 --repository=quake@skull:8084
cd c:\users\pablo\wkspaces\wk00
cm switch main/task2001


I’m using Windows paths, but it will work the same using Linux/macOS paths. And I’m using the
command line, but you can achieve the same behavior from the GUI.

The first command, cm workspace create, creates a new workspace and sets quake@skull:8084 as the repo
to work with. By default, the main branch is where new workspaces point to.

The second command, cm switch, switches the workspace to a given branch, main/task2001 in our case,
and runs an update.

If you check your Branch Explorer at this point, it will look like this:

1

main

2 3

4

main/task2001

5

6

The home icon in the Branch Explorer highlights where the workspace points to. In our case, it points to

220 | Workspaces

the latest on task2001, or the changeset number 6.

What happens when you run the switch?

Remember the chapter "Merging trees" where we went in great detail through how every single
changeset points to a given tree. Let’s consider now that the tree in changeset 6 is something as follows:

6

/

src/inc/

bar.c foo.cbar.h

1

20

13 3

14

21

foo.h

19

The result of the switch (which is actually like an update) will be the following directory structure on your
workspace: (in my case, it was c:\users\pablo\wkspaces\wk00)

/
/inc/
/inc/foo.h
/inc/bar.h
/src/
/src/bar.c
/src/foo.c

Where the files will have exactly the contents of the corresponding revisions on the repository.

A complete workspace is just a copy on your disk of the actual structure of a given changeset. This
definition will vary a little bit in a partial workspace since the copy won’t have to match just a single
changeset.

Metadata of a workspace
Let’s rewind a little bit, and let’s see what happens when you download data to an empty workspace.

With the actual files being downloaded for the repo, Plastic creates (or updates) three key files inside the
.plastic hidden directory in the root of the workspace: plastic.wktree, plastic.selector, and
plastic.workspace.

Metadata of a workspace | 221

6

/

src/inc/

bar.c foo.cbar.h

1

20

13 3

14

21

foo.h

19

update/switch

.plastic/

.plastic/plastic.wktree

.plastic/plastic.selector

.plastic/plastic.workspace

inc/
inc/foo.h
inc/bar.h
src/
src/bar.c
src/foo.c

/ 21 timestamp pablo
inc/ 20 timestamp pablo
inc/foo.h 19 timestamp pablo hash
inc/bar.h 1 timestamp borja hash
src/ 14 timestamp ruben
src/bar.c 13 timestamp ruben hash
src/foo.c 3 timestamp ruben hash

plastic.wktree

plastic.selector

wk00
GUID

plastic.workspace

m
etad

ata

rep "quake@skull:8084"

path "/"

smartbranch "main/task2001"

• plastic.selector contains information about the repository and the current branch. The name
"selector" is kept for historical reasons. In pre-4.0 versions, it contained rules to select which
revisions to load, but this is all gone now.

• plastic.workspace contains the workspace name and a GUID to identify it.

• plastic.wktree is where the essential metadata is stored. It contains metadata about the revisions
downloaded from the repo that will later be used to track changes in the workspace. The metadata
contains the name of the file or directory, the revision number, a timestamp of when it was written
to disk, a hash of its content downloaded from the repo, and then extra info to display in GUIs and
command line like the author.


File timestamp on plastic.wktree: Stores the date when the file was written to the workspace, not
when it was created in the repo. This way workspaces are build-system friendly. When you get a
different version of a file, its date on disk will be newer, even if the revision is older, making build
systems trigger a build because there are changes (think Ant, Makefile, etc).

Update and switch operations
In the first example, I ran a switch, the command used to point the workspace to a different changeset
or branch. The update operation is equivalent to a switch that says "switch to whatever is latest in my
current configuration."

222 | Workspaces

Update
Let’s continue with the same sample repo, but suppose my workspace was located on changeset 3
instead, and we decide to run an update.

1

main

2

4

main/task2001

5

6

main

3

The structure of the trees of the changesets 3 and 5 are as follows:

3

/

src/inc/

bar.c foo.cbar.h

1

4

7 10

11

12 /

src/inc/

bar.c foo.cbar.h

1

4

16 10

17

18

5

So, when you decide to run an update, Plastic will realize it is in changeset 3, and it has to jump to
changeset 5. It knows it has to download a new version for bar.c replacing the current one. At the same
time, it downloads new data to update /src/bar.c, it will update plastic.wktree accordingly.

Update and switch operations | 223

/ 12
inc/ 04
inc/bar.h 1
src/ 11
src/bar.c 07
src/foo.c 10

plastic.wktree

/ 18
inc/ 04
inc/bar.h 1
src/ 17
src/bar.c 16
src/foo.c 10

plastic.wktree

Update moves the workspace to its latest configuration. So, suppose if your workspace is set to work on
main, and you run an update, Plastic will locate whatever the branch’s head is and try to jump to it,
updating both data and metadata in the workspace.

Switch
Instead of going to "latest", a switch is an update that jumps to a different configuration, typically a
different branch or changeset.

Let’s start from where we left in the previous section:

1

main

2

4

main/task2001

6

main

3

5

And let’s run a switch to main/task2001:

cm switch main/task2001

Plastic will check the trees of the changesets 5 and 6:

224 | Workspaces

/

src/inc/

bar.c foo.cbar.h

1

4

16 10

17

18

5

/

src/inc/

bar.c foo.cbar.h

1

20

13 3

14

21

foo.h

19

6

And then figure out what needs to be downloaded to convert your working copy into changeset 6.

/ 18
inc/ 04
inc/bar.h 1
src/ 17
src/bar.c 16
src/foo.c 10

plastic.wktree

/ 21
inc/ 20
inc/foo.h 19
inc/bar.h 1
src/ 14
src/bar.c 13
src/foo.c 03

plastic.wktree

Download new

Update content

In this case, a new file inc/foo.h will be downloaded from the repo (it didn’t exist on the workspace
before), and the contents of both src/bar.c and src/foo.c will be updated to different revisions.

Update to a different repo
It is possible to update a workspace to a different repository. In Plastic, workspaces are not tied to a
given repo: You can reuse a workspace to work with a different repository at any time.

The update and switch operations will try to reuse as much data as possible to reduce the traffic with the
repo (which might be a distant server). I mean, even if the revids don’t match, Plastic will try to reuse files
based on hashes. So, if you switch your workspace from main/task2001@quake@skull:8084 to
main/task2001@quakereplica@localhost:8084 where quake and quakereplica are replicas of the same repo,
Plastic will try to reuse all the files on disk, and if changeset 6 exists on both, no new file data will be
downloaded.

The only practical reason why you wouldn’t switch a workspace, though, is size. I mean, suppose your
workspace is 3GB, and you have local files that add another 2.5GB. If this workspace points to
quake@skull:8084, and you plan to continue working on this repo, there is no good reason to switch to

Update and switch operations | 225

doom@skull:8084 and have to download another 5GB and discard the 2.5GB of local private files.

One repo many workspaces
Although it is already clear that workspaces in Plastic can be used to switch to different repos, it is
important to highlight that more than one workspace can simultaneously work connected to the same
repo.

You can have many workspaces pointing to the same local repo:

quake@local wkspaces/wk00

wkspaces/wk01

wkspaces/wk02

And there can be different workspaces on different machines directly working with a repo on a remote
server:

quake@skull:9095 wkspaces/quake

wkspaces/wk01

wkspaces/wk02

This might sound obvious to most of you, but if you are coming from Git, you’ll be used to a one-to-one
relationship between working copy and repo since this is the Git architecture. There is no possible way to
connect working copies directly to a remote repository since a local intermediate repo is always
required.

Tuning the update operation in full
workspaces
When you run an update or switch operation, a few configuration files affect how the files are actually
written to disk.

These files can be private to the workspace, part of the repository (checkedin to the root dir of the repo),
or can be global files. You can learn more about the specifics of how to set up these files in the
Administrator’s Guide, Configuration Files section [https://www.plasticscm.com/download/help/configfiles].

226 | Workspaces

https://www.plasticscm.com/download/help/configfiles

This section won’t get into the details about the actual formats, but it will explain what they do in-depth.

quake@local wkspaces/wk00cloaked.conf

readonly.conf

writable.conf

eolconversion.conf

Cloaked
cloaked.conf defines the paths to cloak in the workspace. The file is defined as a set of user-defined
regular expressions. The files that match any of the rules will be cloaked.

Cloaked works in two different ways:

1. Suppose you already have /src/foo.c in your workspace, and then you decide to cloak it. This means
the file will be ignored by the update and hence never be updated even if new versions exist. It is
useful if you want to avoid downloading certain big files or a huge tree because you can continue
working with what you have and save time in updates.

2. Suppose your workspace is empty and a cloaked.conf that matches /src/foo.c exists in the repo, or
you create one on your workspace. This means /src/foo.c won’t be downloaded. It is useful to prune
certain parts of the tree, generally due to size issues.


The merge operation might ignore the cloaked files when the file needs to be downloaded to
resolve a merge.

You can read the details of how to setup cloaked.conf and check the reference guide
[https://www.plasticscm.com/download/help/addtocloakedlist] to learn how to configure it from the GUI.

Readonly and writable
By default, Plastic sets all files on the workspace as writable. It is the default behavior since most
developers just want to edit a file and save it without dealing with overriding the read-only attribute.

But, sometimes, it is useful to set files as read-only so that users see an operating system warning
asking them to override the read-only setting when they hit save in their applications. This is commonly
used by team members working on assets that need to be locked, as a reminder to checkout the files
before saving them.

Plastic provides a global setting to decide whether an update should set files as writable (the default) or
read-only.

The writable.conf and readonly.conf config files are useful to create exceptions to the global setting.

In a default "everything is writable" configuration, readonly.conf will define which extensions or file
patterns must be set as read-only on the workspace.

And writable.conf does exactly the opposite.

You can read the details of how to setup writable.conf and readonly.conf and check the reference guide
[https://www.plasticscm.com/download/help/setfilesasreadonlyorwritable] to learn how to configure this setting
from the GUI.

Tuning the update operation in full workspaces | 227

https://www.plasticscm.com/download/help/addtocloakedlist
https://www.plasticscm.com/download/help/setfilesasreadonlyorwritable

Tune EOLs
Admittedly, this is one of my least favorite settings. We only added it to ease the transition of teams to
Plastic from their previous version control.

The file eolconversion.conf defines which files need to convert end of lines during the update and
reverted back to their original during checkin.

I’m not a fan of this option because otherwise, Plastic never touches the file content during update or
checkin, preserving what the developer created. Converting EOLs introduces a performance impact and
breaking the "we preserve what you wrote" rule.

Nevertheless, some teams prefer to see Windows-style EOLs on Windows and Linux-style EOLs on Linux
and macOS. Nowadays, almost all editors I’m aware of are capable of handling EOLs transparently. Still,
some teams and some tools prefer that the version control normalizes the end of lines.

Learn how to specify eolconversion.conf [https://www.plasticscm.com/download/help/eolconversion].

Finding changes
Let’s go back to where we left our sample workspace in the previous example, having just switched to
main/task2001:

/ 21
inc/ 20
inc/foo.h 19
inc/bar.h 1
src/ 14
src/bar.c 13
src/foo.c 03

plastic.wktree

1

main

2

4

main/task2001

main

3 5

6

The plastic.wktree contains the metadata of the files "controlled" by the workspace, the ones that
resemble what is in the repo.

Looking for changes
Each time you run a cm status on the command line or go to "pending changes" or "checkin changes" in
the GUIs (we use the two names interchangeably), Plastic walks the workspace to find any changes.

It groups the changes in the following sections:

• Files and directories to add.

• Changed files.

• Deleted files and directories.

• Moved/renamed files and directories.

228 | Workspaces

https://www.plasticscm.com/download/help/eolconversion

Check the following figure, based on the scenario above where the workspace points to changeset 6:

• It finds that inc/bar.h exists in the metadata but is no longer on disk, so it is considered "locally
deleted".

• The timestamp of src/foo.c on disk is newer than the one stored in the metadata, so the file is
changed. There is an option in the Plastic settings to double-check: If the timestamp changes,
calculate the hash of the file on disk and compare it with the one stored in the metadata to mark the
file as changed. Checking the timestamp is much faster, but some tools tend to rewrite files even if
they didn’t change, so enforcing the hash check is sometimes very useful.

• src/new.c exists on disk but didn’t exist on the workspace tree, so it is marked as a private file that is
a candidate to be added to the repo in the next checkin. More about private files in "Private files and
ignore.conf".

Name RevId Written Hash
/ 21
inc/ 20
inc/foo.h 19 2018/12/24 13:31 hash
inc/bar.h 1 2018/12/24 13:31 hash
src/ 14
src/bar.c 13 2018/12/24 13:31 hash
src/foo.c 03 2018/12/24 13:31 hash

plastic.wktree Actual workspace content

Name Written
/
inc/
inc/foo.h 2018/12/24 13:31

src/
src/bar.c 2018/12/24 13:31
src/foo.c 2018/12/24 13:42
src/new.c 2018/12/24 13:45 A src/new.c

C src/foo.c

D inc/bar.h

I didn’t cover how moves and renames are detected since they have their own section.

Now, you have a pretty good understanding of how changes are detected in a workspace.

Private files and ignore.conf
Any file or directory you add to the workspace will be considered private. Private means it is just local to
the workspace and won’t be checked in, and changes won’t be tracked.

Each time you ask Plastic to find changes, the local files will show up marked as private.

All these privates are suggested by the GUIs to be added to source control.

Very often, that’s exactly what you want to achieve because you just added a new file and want to add it
to version control.

But there are many files, like local configs or intermediate build files (obj, bin, etc) that you want to
ignore, so Plastic doesn’t show them repeatedly.

All you have to do is to add them to ignore.conf and Plastic will, well, ignore them ὤ�.

Although adding files to the ignore.conf list is very easy from GUIs or simply editing the file. You can
read the details of how to setup ignore.conf.

Detecting moves and renames
In the chapter about merges, you already saw how good Plastic deals with moved files and directories
and how important it is to help refactoring the codebase.

Finding changes | 229

But, before a move is checked in to the repo, first, it has to be detected on the workspace. This is what
I’m going to explain now.

Let’s start again with changeset 6 in the examples above and consider the following local changes:

Name RevId Written Hash
/ 21
inc/ 20
inc/foo.h 19 2018/12/24 13:31 hash
inc/bar.h 1 2018/12/24 13:31 hash

src/ 14
src/bar.c 13 2018/12/24 13:31 hash
src/foo.c 03 2018/12/24 13:31 hash

plastic.wktree Actual workspace content

Name Written
/
inc/
inc/foo.h 2018/12/24 13:31

inc/ren.h 2018/12/24 13:45
src/
src/bar.c 2018/12/24 13:31
src/foo.c 2018/12/24 13:31

A inc/ren.h

D inc/bar.h

The file inc/bar.h is no longer on disk, and a new one inc/ren.h appeared as new.

If move detection is enabled (by default, but it can be disabled), Plastic tries to match added/deleted
pairs to try to find moves.

The following figure gives an overview of the algorithm:

A inc/ren.hD inc/bar.h RenameSame size && same hash?1

For text files

Rename

For binary files

Are they very similar?2

Are sizes similar?3 Rename

• If bar.h and ren.h have the same size, then Plastic checks their hashes. If they match (bar.h taken
from metadata and ren.h calculated from disk), then it means it found a rename (or a move, which is
the same as a rename but happens between different directories).

• If files are considered text files, then our similarity algorithm will try to find how similar the files are.
Since the hashes and sizes don’t match, it means the file was modified after being renamed. So, if the
similarity % is higher than a given configurable threshold, the pair will be considered a
rename/move.

• Finally, the similarity algorithm won’t work if the files are binaries, so Plastic compares their sizes. If
the sizes are very similar, then binaries are marked as moved. This is a best guess because it is not
that simple to figure out that a PNG was renamed if it was later modified, but we try to refine the
heuristic to avoid false positives.

The move/rename detection also works for directories. Let’s see it with an example: Suppose we rename
the inc/ directory to incl/. Then, the change detection algorithm will see is something as follows:

230 | Workspaces

Name RevId Written Hash
/ 21
inc/ 20
inc/foo.h 19 2018/12/24 13:31 hash
inc/bar.h 1 2018/12/24 13:31 hash

src/ 14
src/bar.c 13 2018/12/24 13:31 hash
src/foo.c 03 2018/12/24 13:31 hash

plastic.wktree Actual workspace content

Name Written
/
incl/
incl/foo.h 2018/12/24 13:31
incl/ren.h 2018/12/24 13:31
src/
src/bar.c 2018/12/24 13:31
src/foo.c 2018/12/24 13:31

It finds that inc/ and its children are no longer on disk, and a new tree incl/ has been added.

Then, the added/deleted pairs will try to be matched. In this case, the algorithm finds that inc/foo.h and
incl/foo.h have the same size and content, so they must be the same file. And the same happens for
ren.h.

But instead of showing a pair of moves, the Plastic algorithm goes one step further: It tries to match inc/
and incl/. Since its contents are the same, it detects a rename of inc to incl and cleans up the individual
file moves.

Suppose the files were modified, deleted, or moved after the directory rename. In that case, Plastic will
apply a similarity percentage to the inc/ directory structure. Suppose the structures are similar up to a
given %. In that case, the directory will be considered as a move/rename instead of added/deleted.

We are very proud of move detection, and we gave this feature a big name: "Transparent scm" or
"transparent version control" because you can simply work in your workspace, make any changes, and
trust that Plastic will detect what you have done.

We use several extra techniques to detect moves, but I’ll cover that in its own section.

Hiding changes with hidden_changes.conf
Just like you sometimes need to ignore private files with ignore.conf, there are scenarios where you
don’t want Plastic to detect changes in specific files because you don’t want to accidentally include them
in the next checkin. This can happen if you need to adjust config files for a debug session or alter some
source code for whatever reason, but you don’t want to checkin those temporary changes.

hidden_changes.conf helps achieve that. You can read the details of how to setup hidden_changes.conf
and check the reference guide [https://www.plasticscm.com/download/help/addtohiddenlist] to learn how to
configure it from the GUI.

Controlled changes - checkouts
So far, we’ve been doing changes in the workspace and letting Plastic detect the changes.

But there is another alternative: Telling Plastic exactly what you changed, moved, or deleted, so it
doesn’t have to "guess".

Controlled changes - checkouts | 231

https://www.plasticscm.com/download/help/addtohiddenlist

We call these "controlled changes" and "checkouts" are a subset of them. Still, normally we use
"checkouts" for all changes in the workspace that are "controlled" by Plastic because you notified about
them.

Notifying added, deleted and moved
Suppose you want to heavily refactor your project. You can expect Plastic to correctly guess what you did
after the fact based on similarity algorithms. What is the alternative?

Let’s start again from the tree in changeset 6:

/..........21
inc/.......20
inc/foo.h..19
inc/bar.h...1
src/.......14
src/bar.c..13
src/foo.c..03

plastic.wktree

6

/

src/inc/

bar.c foo.cbar.h

1

20

13 3

14

21

foo.h

19

1

main

2

4

main/task2001

main

3 5

6

And let’s perform the following actions:

cm mv inc incl
cm mv incl/foo.h incl/ren.h
cm rm src/foo.c
echo foo > readme.txt
cm add readme.txt

Now, let’s check the metadata of the workspace:

232 | Workspaces

/..........21
readme.txt.CO
incl/......20
incl/ren.h.19
incl/bar.h..1
src/.......14
src/bar.c..13
src/foo.c..03

plastic.wktree

checkout/moved

added

deleted

checkout/moved

plastic.changes

mv /inc /incl

added /readme.txt

rm /src/foo.c

mv /incl/foo.h /incl/ren.h

/

src/incl/

bar.c foo.cbar.h

1

mv

13 3

co

co

ren.h

19

co

As you can see in the figure:

• plastic.wktree now contains information about the actual changes. It knows readme.txt was added,
that /incl was renamed, and also /incl/ren.h was renamed. It also knows that src/foo.c was
deleted.

• plastic.changes is a new file that is now present in the .plastic metadata directory. It complements
plastic.wktree with information about the actual changes. While plastic.wktree knows that /incl
was renamed, plastic.changes contains the data of the actual rename, the source of the move, etc.
plastic.changes doesn’t store the info as a list of operations but more like a tree (also displayed in
the figure). This tree is a subtree of the workspace metadata that is ready to be sent to the server
and contains extra info for the nodes that were moved to identify the sources of the moves/renames.
It is a subtree decorated with extra info telling the operation that was applied to create it.

Note that I marked the tree with a "CO" instead of a number. CO stands for checkout. plastic.changes
contains what we call "the checkout tree", which is a tree that contains the local changes controlled by
Plastic and ready to be checked in.

There is something important to note: When you tell Plastic to move, add, or delete, Plastic doesn’t have
to guess these operations anymore. Unlike what was described in the "Finding changes" section, these
are controlled changes; Plastic knows about them because you told it you did them, so there is no
guessing or heuristics involved.

One of this alternative’s key advantages is to handle moves and renames; there is no guessing involved,
so you can perform extremely complex refactors with "moves" and Plastic will track exactly what you did.

After performing these changes, if you go to the Branch Explorer, you’ll see something as follows:

Controlled changes - checkouts | 233

1

main

2

4

main/task2001

main

3 5

6

co

See how there is a new "checkout changeset", and the home icon is on it, meaning your workspace is not
synced anymore to changeset 6, but 6 and some controlled changes on your workspace.

If you make "not-controlled" changes (make the moves and deletes and let Plastic detect them
automatically), then there won’t be a checkout changeset in your Branch Explorer.

How to move files and directories from GUIs
We have seen the cm mv command to move files and directories from the command line. But, you
can achieve the same from any of the GUIs going to the "Workspace Explorer" view (previously
known as "items view") and doing CTRL-X on the source, and then pasting the destination with
CTRL-V (or the equivalent command key on macOS).

For renames, it is simpler; show the context menu of the file or directory to rename, and you’ll find
a "rename" option. Of course, you can use the particular rename shortcut on your operating
system.

Notifying changes
You can tell Plastic you are going to modify a file by using the checkout action both from GUIs (right-click
a file from "Workspace Explorer" and select "checkout") and command line (cm co command).

Let’s continue with the example above. You can perform:

cm co src/bar.c

And Plastic will mark the file as checkedout both in plastic.wktree and plastic.changes.

This is what we strictly call a checkout, although, as we saw in the previous section, we extend the name
checkout for controlled deletes, moved, and added files.

When to use controlled changes
Very simply, to control changes:

• If you need to lock files, you must checkout first. Check "Locking: avoiding merges for unmergeable

234 | Workspaces

files" for more info. Never forget to checkout before making any changes to files you need to lock, or
there will be a risk of losing your local changes if someone else locked the files and modified them
first.

• If you want to perform a very complex refactor, chances are you are better served by cm mv (or GUI
equivalent) than letting the heuristics guess what you did after the fact.

• If you have a huge workspace (bigger than 700k files) and the performance of detecting changes is
not fast enough (it takes more than 4-5 seconds, which starts to be annoying), you probably are
better served by checkouts. To achieve this, you have to disable finding local changes and stick to
checkouts. There is an option in "Pending Changes" (or "Checkin Changes") in all GUIs to do this: By
disabling it you make Plastic show the checkouts, and ignore any changes done locally. Hence, it
relies on you telling it what you did.

• You’ll be using controlled changes transparently if you enable your plugin for Visual Studio, Eclipse,
IntelliJ, or Unity plugins (among others) because the IDEs notify the underlying Plastic plugin about
changes to files, renames, moves, and the plugin simply performs the controlled operation
underneath.

Usually, you will use a combination of controlled and not controlled changes; most likely you’ll simply
modify files, but sometimes you’ll delete or move files from the Plastic GUI. Plastic is able to deal with
both types of changes simultaneously.

A note about move detection and IDEs
The Visual Studio version control integration has a well-known issue notifying moves to the
underlying version control when moves happen between different projects.

That’s why when using the Plastic plugin for Visual Studio, Plastic needs to use its move detection
code under some circumstances.

This happens with other IDEs, too, because Git is not very good with move detection, so IDEs tend
to forget that other version controls can do it better. Well, we do the homework and fall back to
our detection system when the IDEs don’t do their job.

Controlled changes - checkouts | 235

Advanced change tracking
We are obsessed with the idea of doing precise change tracking in a transparent form. I mean, even if
you don’t notify Plastic of anything, our goal is to create algorithms good enough to detect what you did
after the fact. We love the idea of transparent version control so you can simply focus on getting your
refactors and changes done with minimal interference from Plastic.

That’s why we developed a set of techniques that I think is worth sharing.

Fast change detection with watchers
Walking the full workspace tree to look for changes means reading the entries of each of the directories
and comparing size, name, and last write times with the workspace metadata (plastic.wktree).

Doing this walk in a naïve way proved not to be fast enough, so:

• In Windows, we take advantage of the FindFirstFile/FindNextFile APIs to minimize the number of
reads.

• In Linux/macOS, we use the same technique the find command uses to traverse the disk fast: The
FTS functions [http://man7.org/linux/man-pages/man3/fts.3.html].

• We take full advantage of Windows ReadDirectoryChangesW APIs (a.k.a. File System Watchers) to
detect changes in the workspace and reduce directory traversals. This allows the GUI to find changes
much faster after the first time because it focuses only on what changed after the first run.

• In Linux, we use inotify to speed up change detection. The problem is that inotify is much trickier to
configure than its Windows counterpart. Usually the user needs to do some tuning to use it. Learn
how to enable INotify in Linux [https://www.plasticscm.com/download/releasenotes/5.4.16.721].

• As I write this, we plan to take advantage of FSEvents on macOS. However, they are not so flexible as
Windows watchers and impose more limitations.

Advanced move detection
In Windows, we can use the USN Journal on NTFS volumes to do precise move tracking. Linux and
macOS don’t provide an equivalent feature, which is one reason we were reluctant to enable it in
Windows. This means there is a way to precisely detect moves and renames, detected by the file system
itself. The only downside is that many editors don’t really rename but create a new file with the new
name and then delete the old one.

Switch branch with changes – why it is
risky
By default, you can’t switch to a different branch (or changeset, or label, I mean, change configuration) if
you have pending changes (controlled or not controlled). There is a configuration setting in preferences
to allow this switch but, it should only be used if you understand what the behavior will be. And this is
what I will explain in this section.

Let’s go back to our example repo and suppose we are now on changeset 6, and modified src/foo.c:

236 | Workspaces

http://man7.org/linux/man-pages/man3/fts.3.html
https://www.plasticscm.com/download/releasenotes/5.4.16.721

1

main

2

4

main/task2001

main

3 5

6

/

src/inc/

bar.c foo.cbar.h

1

4

16 10

17

18

5

/

src/inc/

bar.c foo.cbar.h

1

20

13 3

14

21

foo.h

19

6

C src/foo.c

And now, we’d like to switch from changeset 6 to 5 (switch from task2001 to main). Initially, Plastic will tell
you that you can’t because you have pending changes. If you force the setting, Plastic will let you do the
switch, and your workspace tree will be as follows:

Name
/
inc/
inc/bar.h
src/
src/bar.c
src/foo.c

plastic.wktree

RevId
18
04
1

17
16
03

Switch branch with changes – why it is risky | 237

Note, that the revid of src/foo.c says that your changes come from revid 03, the one loaded in
changeset 6, and not revid 10, which should have after you switched to changeset 5.

Now, you will be unable to checkin src/foo.c, because Plastic will complain that the metadata of your file
src/foo.c doesn’t match the one loaded by changeset 5.

The actual message is: "The parent revision of the item /src/foo.c is inconsistent with the loaded one in
the changeset `cs:5`".

Why does Plastic behave this way?

Well, suppose Plastic lets you complete the checkin: You would be entering changes based on foo.c
revid 03 and completely overriding changes done in revid 10. You would be losing changes! It would be
like copy/pasting a file, overwriting your local changes, and doing checkin.

It might be a little bit confusing if you encounter this situation, but the reason is to avoid losing changes
at all costs, and that’s why Plastic doesn’t allow you to work this way.

What is the point of allowing you to switch workspace configuration while having pending changes?
Well, we heavily considered the option to simply disable such behavior (as Git does), but we are aware of
cases where it can be useful:

• You have a config file in version control, and you modify it to do some tests.

• Then, you want to test this config on a different branch.

• Well, it is very useful to just switch branches and test. But, the point here is that you’ll never checkin
these changes, at least not outside the branch where they were originally made.

What if you really want to override changes?
Suppose you want to modify changeset 5 with changes coming from 6 without using merges. In that
case, you can shelve src/foo.c and apply those changes to the new configuration and checkin.

You might think, this will "merge the changes", not override them. Yes, that’s true. Suppose you want to
override src/foo in changeset 5 with your changes made while working on a different branch. In that
case, you have to manually copy the file, switch, then overwrite. I know this is not ideal, but what you are
doing is not a recommended practice. It should be a rare case that you shouldn’t perform often, and
that’s why we think we shouldn’t make it easier ὤ�.

Full workspaces are always ready to
merge
Full workspaces are always in sync with a given changeset. They can have local changes based on that
changeset but will always be in full sync with it.

What does this mean?

I’m adding again the branches and trees we are using all through this chapter:

238 | Workspaces

C /src/bar.c C /src/foo.c C /src/bar.c

/

src/inc/

bar.c foo.cbar.h

1

4

2 3

5

6

1

/

src/inc/

bar.c foo.cbar.h

1

4

7 3

8

9

3

/

src/inc/

bar.c foo.cbar.h

1

4

7 10

11

12 /

src/inc/

bar.c foo.cbar.h

1

4

16 10

17

18

1

main

2

4

main/task2001

main

3

6

5

2 5

What I mean by full sync is that if your workspace is in changeset 5, its metadata has to resemble what
was loaded there. You must be loading the correct bar.c, foo.c and bar.h. A configuration like the
following will be valid:

Name
/
inc/
inc/bar.h
src/
src/bar.c
src/foo.c

plastic.wktree

RevId
18
04
1

17
16
10

And, of course, bar.c, foo.c and bar.h could be heavily modified but always based on the right revisions
loaded from changeset 5.

If you were in sync with changeset 3, your workspace tree would load the exact revisions on that tree,
and your workspace changes would be done on top of those versions.

What I mean is that a configuration like the following is not valid in a full workspace:

Full workspaces are always ready to merge | 239

Name
/
inc/
inc/bar.h
src/
src/bar.c
src/foo.c

plastic.wktree

RevId

01

16
03

And, it is not valid because you can’t be in sync with a changeset while loading revid 16 of bar.c and revid
03 of foo.c because such a configuration never existed in the repo. See what I mean? Being in full sync
means that what you have on disk (before changes, of course) resembles exactly a changeset on the
repo.

You may say, you can have cloaked.conf in place and then avoid the update of certain files. And yes, that
would be correct, but those files would always be updated to resemble the workspace configuration
during the merge if needed.

And I already mentioned merge, which is the key for this way of working together with what we saw in
"Switch branch with changes": Full workspaces are always ready to checkin to the head of its loaded
branch, and always ready to merge, that’s why:

• They must be in full sync with a given changeset, which means their metadata matches the one in
the changeset.

• There can’t be files loaded from a different changeset. Otherwise they won’t be checkedin (as we saw
in the previous section).

• And it won’t be possible to perform merges if their workspace is not in full sync either.

And now we put together what we learned in the merge chapter with what we just learned about
workspace metadata.

Suppose you want to merge from task2001 to your workspace based on main but with the configuration
marked as wrong before: The one loading bar.c revid 16 and foo.c revid 03.

How can you calculate the common ancestor? You can’t.

Common ancestors are calculated based on per-changeset merge tracking. Since your current
configuration doesn’t match any changeset, there is no way to find the "destination changeset". Hence,
no way to calculate the common ancestor. If we assume your workspace is on changeset 5 despite these
changes in bar.c and foo.c, the resulting merge would be wrong because it would incorrectly merge
those files due to wrong common ancestors, potentially losing changes.

How can you lose changes? Well, you are loading foo.c revid 03, which was created on changeset 1, but
merge tracking will assume you have revid 10, created on changeset 3. You will delete all changes made
after changeset 3 on main if Plastic allows you to merge from any branch with changes in foo.c while
having inconsistent configuration.

This is the reason why Plastic is always so strict about keeping full workspaces in sync. That’s why you

240 | Workspaces

need to update before checkin (even if it happens automatically as described in "Conflicts during checkin
– working on a single branch") to always keep your workspace in sync to a given changeset and always
stay ready to merge.

There is a way to break this synchronization and create more flexible configurations: Partial workspaces.
We’ll see them in depth in the next sections.

Partial workspaces
We created partial workspaces for Gluon, the GUI for game development artists, and anyone not dealing
with code and mergeable files. Gluon and partial workspaces (and the cm partial command) are great to
deal with documentation (I’m using Gluon to checkin every single change to this book while I write),
images, diagrams, design documents, excels, reports, and any initially unmergeable files you modify on
a single branch.

Gluon and partial workspaces are typically used with file locking and checkouts to prevent concurrent
changes on unmergeable files. It is possible to use Gluon with text files that can indeed be merged, but
I’d say it is not the main scenario for Gluon and partial workspaces.

Configuring your partial workspace
After you create your partial workspace (typically using Gluon, although you can also create a regular
workspace from CLI and then run cm partial configure), the next step is to configure it. Configuration
tells Plastic what files you want to download and track, which means the workspace will behave
differently from a full one.

I will start with the example we were following in the chapter, and show the trees on the repo and how
everything is mapped to the workspace.

/

src/inc/

bar.c foo.cbar.h

1

4

2 3

5

6

1

/

inc

bar.h

src

bar.c

foo.c

Name
/
src/
src/foo.c

plastic.wktree

RevId
--
--
03

The figure shows how we started working on our partial workspace when the only changeset that
existed on the repo was changeset 1. Then, we configure the partial workspace to download only
src/foo.c, and the workspace metadata will reflect that; it just loads foo.c revid 03. Note how I
deliberately omit revision numbers for directories.

Also, note how the src directory is "partially checked" during configuration. This means not all its
children are loaded, and it will impact how the update operation works in partial workspaces. More on
that later.

Partial workspaces | 241

Partial workspaces aren’t in sync with a given
changeset
Then, after a while, the repo evolves to changeset 2 (someone else did a checkin). Then we decide to
configure bar.c as follows:

/

src/inc/

bar.c foo.cbar.h

1

4

7 3

8

9

2

inc

bar.h

src

bar.c

foo.c

Name
/
src/
src/bar.c
src/foo.c

plastic.wktree

RevId
--
--
07
03

Note how the src directory is now fully checked because all its children are fully checked. Our local
metadata now loads bar.c revid 07 and foo.c revid 03, so we could consider our workspace is synced
to changeset 2 although that won’t last.

The repo continued evolving, and it is now at cset 5. And then, we decide to update just one of the files
we have: we only update bar.c, but we don’t download the new changes of foo.c.

/

src/inc/

bar.c foo.cbar.h

1

4

16 10

17

18

5

Update bar.c
Name
/
src/
src/bar.c
src/foo.c

plastic.wktree

RevId
--
--
16
03

- from cs:5
- from cs:1

At this point, we couldn’t draw a "house icon" on any changeset on the Branch Explorer because the
workspace is not "at any given changesest" anymore. So, what we have in the workspace is a mix of
things on the repo, but they are not together in the same way they are in the workspace at any
changeset.

Then, the repo continues evolving, and it reaches changeset 7. At this point, we run a full update, and
the new src/new.c will be downloaded, together with the new version of foo.c that we refused to
download before. The file new.c is only downloaded during the workspace update because the src
directory is "fully checked". If it wasn’t fully checked, new files wouldn’t be downloaded during the
update. At this point, we could say our workspace is again in sync with changeset 7 although this is not a
common scenario with partial workspaces, which tend to stay "not synced to a given cset" for a long
time.

242 | Workspaces

/

src/inc/

bar.c foo.cbar.h

1

4

16 10

23

24

7

new.c

22

Wk update will
download src/
new.c because

src is fully
checked

plastic.wktree

Name
/
src/
src/bar.c
src/foo.c
src/new.c

RevId
--
--
16
10
22

- from cs:5
- from cs:7
- from cs:7

Changeset 8 brings new changes for foo.c and new.c, but we only decide to update new.c. Our workspace
isn’t in sync with a changeset anymore.

/

src/inc/

bar.c foo.cbar.h

1

4

16 25

27

28

8

new.c

26

plastic.wktree
update new.c

only Name
/
src/
src/bar.c
src/foo.c
src/new.c

RevId
--
--
16
10
26

- from cs:5
- from cs:7
- from cs:8

Partial workspaces can checkin without downloading
new changes
Then, changeset 9 introduces even more modifications (made again by someone else working on the
repo), but at this point, we don’t make any updates. But, we modified bar.c locally.

/

src/inc/

bar.c foo.cbar.h

1

4

16 25

30

31

9

new.c

29

No update in
the wk.

bar.c is locally
modified

plastic.wktree

Name
/
src/
src/bar.c
src/foo.c
src/new.c

RevId
--
--
16
10
26

- from cs:5
- from cs:7
- from cs:8

Now, with our workspace not in sync with any changeset, we’ll try to checkin bar.c. The partial
workspace can do that without requiring a previous update to be "in sync with head".

The following figure shows what happens after you checkin src/bar.c from the partial workspace. A new
changeset is created in the repo (changeset 9 this time), but the local metadata is only updated for bar.c,

Partial workspaces | 243

while the rest stays how it was.

We created a new changeset on the branch, while our workspace doesn’t have the same file versions
than the new head changeset we just created. This flexibility is the key benefit of partial workspaces.

Checkin changes to bar.c

/

src/inc/

bar.c foo.cbar.h

1

4

32 25

33

34

9

new.c

29

Name
/
src/
src/bar.c
src/foo.c
src/new.c

plastic.wktree
Your metadata

is updated to
reflect the

checkin of bar.c
in head

But your tree is not in sync: foo.c
and new.c are totally outdated, but

you were able to checkin

RevId
--
--
32
03
26

- from cs:9
- from cs:1
- from cs:8

Of course, don’t try to perform branch merges on partial workspaces. It’s not possible to merge to the
current workspace status because it doesn’t resemble any changeset configuration, and hence merge
tracking wouldn’t work.

Other than that restriction, partial workspaces are very useful for per-file version control workflows.

Fully checked and partially checked directories
During the last few sections, I introduced the meaning of partially checked compared to fully checked
directories in partial workspaces configurations, but I will explain them here in detail.

Consider we configure our workspace in the following way:

/

src/inc/

bar.c foo.cbar.h

1

4

2 3

5

6

1

/

inc

bar.h

src

bar.c

foo.c

Name
/
src/
src/bar.c

plastic.wktree

RevId
--
--
02

Note that since I didn’t select all the children of src/, it is partially checked.

Then, after a while, the repo evolved, and new changes to bar.c, foo.c appeared, and also a new file
under src. Will the new changes be downloaded if I update the workspace?

244 | Workspaces

/

src/inc/

bar.c foo.cbar.h

1

4

32 25

33

34

9

new.c

29

Wk update will
only download
bar.c because
src is partially

checked.
new.c won't be

downloaded

Name
/
src/
src/bar.c

plastic.wktree

RevId
--
--
32

No. Only the configured file bar.c will be updated to the latest version. Since the src directory is partially
configured, new files under it won’t be downloaded.

Partially configured directories are designed this way to have a way to avoid new content from being
unexpectedly downloaded. If you want the update to download "anything new under a given path",
ensure this path is "fully checked".

How to convert a partial workspace into a full
workspace and vice versa
Suppose you are working on a partial workspace, and for whatever reason (like doing a merge), you
need to convert it into a full workspace. How can you achieve that?

Easy.

Run a full cm update or open the classic Plastic GUI and run an update.

The update will synchronize the workspace with the head changeset of the branch you are working on.

 This operation can potentially download lots and lots of GBs, depending on the size of your repo.

Now, how to convert a full workspace to a partial workspace? Run cm partial configure or open Gluon
and run a configure, and the workspace will be converted.

Files that require merge during checkin
I said that partial workspaces can’t be used to do merges, but I referred to merges between different
branches since we added support to deal with files that need to merge during checkin.

Consider the following situation:

Partial workspaces | 245

/

src/inc/

bar.c foo.cbar.h

1

4

32 25

33

34

9

new.c

29

Name
/
src/
src/bar.c
src/foo.c
src/new.c

plastic.wktree

1

main

2

main

3 5 7 8 9

RevId
--
--
32
03
26

- from cs:9
-from cs:1
- from cs:8

• We see how the repo evolved, and now we have up to changeset 9.

• We see the tree for changeset 9.

• And we see the current configuration of the partial workspace: Only bar.c is "in sync" with changeset
9, but foo.c and new.c are not.

• I didn’t draw a "home icon" on any changeset in the Branch Explorer diagram because the workspace
is "not" in a given changeset, as you know by now. The workspace has parts and pieces from
different changesets, but it is not clearly in sync.

• Finally, I marked src/foo.c in a different color to reflect that it was locally modified.

Now, we want to checkin src/foo.c. What is going to happen?

Plastic is going to merge your local changes of foo.c (made based on revid 03) with the latest foo.c
revid 25 on head (changeset 9). Actually, in single branch merges, it is possible to simulate per-file
merge tracking, and that’s what Plastic does here.

Let me explain in more detail with a diagram:

1 2 3 5 7 8 9

foo.c

25

foo.c

03

foo.c

co

changed in
the workspace

base or common
ancestor

destination

source

246 | Workspaces

Plastic accurately assumes that:

• The file changed in the workspace is the source contributor of the merge.

• The file in head is the destination contributor of the merge.

• The parent of the locally modified revision (the one it started from) is always the common ancestor.
Since plastic.wktree knows that the original revision for foo.c was revid 03, we have the common
ancestor.

Now the 3-way merge can operate and resolve possible conflicts.

Of course, a merge link can’t be created because this merge happens at a "file level," and as we
discussed in great detail in the merge chapter, Plastic tracks merges at a changeset level. This is not a
big deal anyway, since users working with these types of merges don’t want to see merge links anyway.



By the way, this scenario wouldn’t have been possible if the user locked foo.c, because then no new
revisions would have been created, and the merge would have been avoided. Or, if once changeset
exists, the user tries to lock his old copy of foo.c. Plastic will never allow them to lock an old version.
In this case, of course, a .c file is fully mergeable, so locking is not the way to go, and that’s why we
added merge support for these merge needed on checkin situations.

Didn’t you say per-file merge tracking wasn’t
possible?

Yes, in "Changeset-based merge tracking" we covered in great detail how merge tracking works
and how merge links are only set between changesets. Hence, it is not possible to merge just
some files from a branch, skipping the others, and then expect to merge those skipped files later.

But partial workspaces use a small "hack" to merge individual files during checkin. The algorithm
calculates the common ancestor without using any merge tracking. Due to the linear nature of the
scenario (single branch), we can assume that the common ancestor is always the parent of the file
being checked in.

This assumption can’t be made in any other circumstances when multiple branches are involved
(otherwise, the entire merge tracking calculation wouldn’t be needed at all ὠ�).

Xlinks in partial workspaces
One thing to keep in mind while using writable Xlinks in partial workspaces, is that they are always
updated to latest on the destination branch of the Xlink and the checkins always placed in head.

Let me explain what this means.

Remember that writable Xlinks are like special symlinks to the root of a given repo in a given changeset.
If your Xlink points to a repo in cset 10, the subdirectory is loaded with the content of that repo in
changeset 10.

But when using partial workspaces, the workspace will always try to download whatever is latest in the
branch that contains changeset 10.

This is because partial workspaces are designed for a very simplistic single branch operation where
every time you update, you get whatever is latest on that branch, so we applied the same principle to
Xlinks.

Partial workspaces | 247

In full workspaces, the workspace is in sync with a given changeset, so it is very easy to know where the
Xlink points to. In full workspaces, the metadata of every directory is tracked, and we know which is the
revid it points to.

But, in partial workspaces, Plastic ignores the revid of the directories. Most likely, (as we saw in the
previous sections), you won’t be loading something consistent with any revid of a directory, since you
can have outdated files together with up-to-date ones in the same directory. For this reason, it wouldn’t
be easy to know which version of the Xlink we should be loading at each moment. And hence, we
decided to make Xlinks point to the head of the branch in partial workspaces.

248 | Workspaces

HOW TO LEARN MORE

By this point, you have gained a great understanding of general version control patterns, practices, and
internal workings. And you also learned a lot about the Plastic SCM specific way of working.

My goal here is to point you to some good resources to learn more.

More about Plastic SCM
There are two key places to learn more about Plastic:

• The documentation site [https://www.plasticscm.com/documentation].

• The blog [http://blog.plasticscm.com].

Materials for learning more essential info
The main guides in our documentation that you should read to obtain a deeper knowledge of Plastic:

• Administrator’s guide [https://www.plasticscm.com/download/help/adminguide]. This guide covers
everything about configuring the server, installing, setup locks if needed, doing backups, archiving
revisions, configuring files and licenses. This is a reference more than a book to read cover-to-cover.

• Security guide [https://www.plasticscm.com/download/help/securityguide]. If you configure an on-premises
server, then ensure you look at this guide to learn how to perform basic security actions. This is a
short guide full of examples that you can use to solve specific cases.

• Gluon - Version control for non-developers [https://www.plasticscm.com/download/help/gluonguide]. If
you need to work on a single branch with locks, ensure you look at this guide.

• Triggers [https://www.plasticscm.com/download/help/triggersguide]. Use this guide if you need to customize
the behavior of Plastic. You can enforce policies like ensuring branches follow a given naming
convention, and many others.

• Cloud [https://www.plasticscm.com/download/help/cloudguide]. Learn how to use Plastic Cloud Edition or
add a Cloud extension to your Enterprise Edition. It explains how our Cloud service works.

• Find [https://www.plasticscm.com/download/help/cmfind]. Plastic can query branches, changesets, and
other types of objects. This guide explains how to run these queries.

• Command line [https://www.plasticscm.com/download/help/commandline]. Learn how to use the command
line to perform some common operations.

• Xlinks [https://www.plasticscm.com/download/help/xlinks]. Learn how to do component-oriented
development with Xlinks. This guide extends what we covered in this current book in more detail.

More about Plastic SCM | 249

https://www.plasticscm.com/documentation
http://blog.plasticscm.com
https://www.plasticscm.com/download/help/adminguide
https://www.plasticscm.com/download/help/securityguide
https://www.plasticscm.com/download/help/gluonguide
https://www.plasticscm.com/download/help/triggersguide
https://www.plasticscm.com/download/help/cloudguide
https://www.plasticscm.com/download/help/cmfind
https://www.plasticscm.com/download/help/commandline
https://www.plasticscm.com/download/help/xlinks

Git interop
There are two reference guides to learn how Plastic interoperates with Git:

• GitServer [https://www.plasticscm.com/download/help/gitserverguide]. This guide explains how to set up a
Plastic SCM server so that Git clients think it is a Git server. It is very good to help transition other
team members from Git or interoperate with third-party systems that only speak the Git protocol.

• GitSync [https://www.plasticscm.com/download/help/gitsyncguide]. Learn how to use Plastic as a Git client
and push/pull to GitHub or any other Git service.

References
Use the following only as a reference; they are not meant to be read like a book but just describe how
certain features work. Armed with the knowledge in this current book, most of what the guides cover
will be straightforward to master.

• Graphical user interface [https://www.plasticscm.com/download/help/guiguide]. A reference of the
features in the GUIs.

• Task and issue trackers [https://www.plasticscm.com/download/help/taskandissuetrackers]. How to
configure Plastic to interact with Jira, Polarion, and a few others. Includes info on how to create your
own integrations with issue tracking systems.

• External parsers [https://www.plasticscm.com/download/help/externalparsers]. How to develop support for
new languages for the Plastic semantic features.

DevOps with Plastic
As we covered in the "One task - one branch" chapter, the entire task-oriented workflow is oriented to
implement DevOps. But besides using task branches, you need a way to get the branches merged and
deployed.

There are two main ways to achieve this with Plastic: Using mergebots (where Plastic drives the CI and
decides when to merge and build) or delegating the leadership to a Continuous Integration system.

DevOps driven by mergebots
• mergebot: the story of our DevOps initiative [https://www.plasticscm.com/download/help/

devopsinitiative]. Explains what mergebots are and how they can help you implement DevOps.

• Add a mergebot to your repo! [https://www.plasticscm.com/download/help/hireamergebot] A practical
example and tour through a working DevOps implementation driven by a mergebot.

• Configure mergebots using config files [https://www.plasticscm.com/download/help/
configuremergebotsconfigfiles]. Explains how to manually configure mergebots without WebAdmin
assistance.

• Plastic SCM DevOps: Custom plugs [https://www.plasticscm.com/download/help/devopscustomplugs].
Explains how to develop plugs: The connectors between mergebots and systems such as Slack,
email, etc.

• Plastic SCM DevOps: Custom mergebots [https://www.plasticscm.com/download/help/
devopscustommergebots]. Explains how to develop your own bots.

250 | How to learn more

https://www.plasticscm.com/download/help/gitserverguide
https://www.plasticscm.com/download/help/gitsyncguide
https://www.plasticscm.com/download/help/guiguide
https://www.plasticscm.com/download/help/taskandissuetrackers
https://www.plasticscm.com/download/help/externalparsers
https://www.plasticscm.com/download/help/devopsinitiative
https://www.plasticscm.com/download/help/hireamergebot
https://www.plasticscm.com/download/help/configuremergebotsconfigfiles
https://www.plasticscm.com/download/help/devopscustomplugs
https://www.plasticscm.com/download/help/devopscustommergebots

DevOps driven by the CI system
• A DevOps Primer [https://www.plasticscm.com/download/help/devopsprimer]. An explanation of what

DevOps is, how we understand it, and how we implement it with Plastic.

• DevOps with Bamboo and Plastic [https://www.plasticscm.com/download/help/devopsbamboo]. A practical
example explaining how to implement a DevOps cycle with Plastic and Bamboo.

• DevOps with Bamboo: connecting to Jira [https://www.plasticscm.com/download/help/devopsbamboojira].
Extends the previous example and explains how to take advantage of the extra info provided by the
issue tracker.

• DevOps with TeamCity [https://www.plasticscm.com/download/help/devopsteamcity]. An alternative
implementation of DevOps, this time using JetBrains' TeamCity CI system.

• CyberFlex - Jira, TeamCity and Plastic integration [https://www.plasticscm.com/download/help/
cyberflexjirateamcityplastic]. One of our customers shares their CI implementation.

Blog highlights
We regularly publish content on our blog [http://blog.plasticscm.com], and I’d like to highlight a few
blogposts that are worth reading:

• Plastic vs. Git [https://www.plasticscm.com/download/help/plasticvsgit] shows you how Plastic compares to
the now ubiquitous version control and what we try to do better.

• All the software we write [https://www.plasticscm.com/download/help/allsoftwarewewrite]. If you want to
learn more about the work we do and the software we develop.

• The story of Jet: Plastic’s super-fast repo storage [https://www.plasticscm.com/download/help/jetstory]. It
explains why we now use Jet as the default storage and why it is faster than the other alternatives.

• Diff math [https://www.plasticscm.com/download/help/diffmath]. It explains some uncommon facts of very
common diffs.

• Track refactored code across files with Plastic SCM [https://www.plasticscm.com/download/help/
trackrefactoracrossfiles]. It explains some of the semantic features in Plastic SCM.

• Using history to better explain branch differences [https://www.plasticscm.com/download/help/
historytoexplainbranchdiff]. Delves into how Plastic enriches diffs with info from the file history.

How we work
In 2017, we wrote a series of blogposts explaining how we develop our products, including the patterns
and practices. The series was written before our move to mergebots, but most of what it tells is still
relevant:

• How we do trunk based development with Plastic SCM [https://www.plasticscm.com/download/help/trunk]

• To deploy versus to release [https://www.plasticscm.com/download/help/todeployvstorelease]

• Trunk-based development blends well with task branches [https://www.plasticscm.com/download/help/
trunkandtaskbranches]

• How we do trunk-based development: answering frequent questions [https://www.plasticscm.com/
download/help/trunkfaq]

• Plastic SCM development cycle - key practices described [https://www.plasticscm.com/download/help/
howwework]

Blog highlights | 251

https://www.plasticscm.com/download/help/devopsprimer
https://www.plasticscm.com/download/help/devopsbamboo
https://www.plasticscm.com/download/help/devopsbamboojira
https://www.plasticscm.com/download/help/devopsteamcity
https://www.plasticscm.com/download/help/cyberflexjirateamcityplastic
http://blog.plasticscm.com
https://www.plasticscm.com/download/help/plasticvsgit
https://www.plasticscm.com/download/help/allsoftwarewewrite
https://www.plasticscm.com/download/help/jetstory
https://www.plasticscm.com/download/help/diffmath
https://www.plasticscm.com/download/help/trackrefactoracrossfiles
https://www.plasticscm.com/download/help/historytoexplainbranchdiff
https://www.plasticscm.com/download/help/trunk
https://www.plasticscm.com/download/help/todeployvstorelease
https://www.plasticscm.com/download/help/trunkandtaskbranches
https://www.plasticscm.com/download/help/trunkfaq
https://www.plasticscm.com/download/help/howwework

Great books to read
I already mentioned some of them in previous chapters, but I think it is worth listing them together
here. For younger readers, I wonder if you would prefer a compilation of blogs instead. Still, I think
there’s no better way to learn than taking advantage of someone who already collected good knowledge
and put it together, instead of having to do the exercise by yourself. Not that reading online texts are
bad, of course, but some of the greatest foundations are easily obtained from a few good books.

• Software Configuration Management Patterns: Effective Teamwork, Practical Integration
[http://www.scmpatterns.com] by Steve Berczuk with Brad Appleton. It is the Bible of patterns and
practices, and although it was written in early 2000. It is still unsurpassed by any other books in the
matter.

• The DevOPS Handbook. How to Create World-Class Agility, Reliability, and Security in
Technology Organizations by Jez Humble, Gene Kim, John Willis, Patrick Debois. It is an easy-to-read
book (unlike the previous title on Continuous Delivery by Humble), entertaining, and full of game-
changing experiences. This is your book if you need to understand why automating the last mile
matters or why DevOps, in general, makes sense from a business and technical perspective.

• Clean Code: A Handbook of Agile Software Craftsmanship by Robert C. Martin. It is the team’s
favorite text on how to write code. I must admit it is not my personal favorite, but it is undoubtedly a
good one, and since the team here at Plastic strongly recommends it, I had to add it to the list ὤ�.

• Implementation Patterns by Kent Beck. This one is the book I prefer over Clean Code. I consider it
more serious and solid. You might wonder why I recommend books that are not strictly related to
version control. Well, the reason is that I view version control as a part of a wider discipline. I like to
see version control, and of course Plastic, as a tool not only to control projects but also to produce
better, more maintainable, easier-to-read code. And well, to achieve that goal, it is good to
understand what some experts consider good code ὠ�.

• Agile Project Management with Kanban by Eric Brechner. I loved this book, and it was the one that
triggered us to jump from Scrum to Kanban. I read a bunch of titles on Kanban, but this was the one
I really considered great. Of course, this might be a very personal choice, but I strongly recommend
it. Task branches and DevOps blend extraordinarily well with Brechner’s pragmatic view of Kanban.

• Explore It!: Reduce Risk and Increase Confidence with Exploratory Testing by Elisabeth
Hendrickson. This book helped us better understand the role of manual testing and served as the
basis for our validations. I always preferred automatic tests better than manual, but only because I
saw many teams doing manual tests that were just scripted procedures that could be easily
automated. Exploratory testing really gets the best of the human tester by making them use their
creative side instead of constraining them to follow procedures.

• Code Complete: A Practical Handbook of Software Construction by Steve McConnell. This is my all
times favorite book on how to write software. It was originally written in the 1990s, but it is still one
of the greatest books on the subject. It shows its age especially for young readers, but I would still
recommend it as the best one. It is not only about code; if you want to clearly understand the
difference between a walkthrough and a formal code review, you’ll find it in McConnell’s greatest
text.

• Agile Project Management with Scrum by Ken Schwaber. One of the originals textbooks on the
matter. I asked all my students in university to read chapters 1 and 2 as the best and shortest
descriptions of how Scrum works. And, it used to be a mandatory read for all newcomers to the team
here too.

• Rapid Development: Taming Wild Software Schedules by Steve McConnell. I’m probably showing
my age here, but Mr. McConnell nailed it with this book, where he plotted a ton of great practices to
develop software faster before the agile explosion. It is still a great book to understand how to work
in iterations and avoid project management’s classic (and everlasting) pitfalls.

252 | How to learn more

http://www.scmpatterns.com

• Agile Estimating and Planning by Mike Cohn. If estimating is something you need to do (you never
know anymore since many teams, including ourselves, pivoted to a more organic way of working and
delivering software), this book will explain great things. It includes chapters on how prioritizing
features based on value, and many other interesting topics I later found repeated in other books.

• Software Estimation: Demystifying the Black Art by Steve McConnell. Well, it is obvious by now
who my favorite author is. Books on software estimation tend to be… well, ultra-boring. Cohn’s book
and this one are my two favorites. T-shirt sizing and techniques like PERT to calculate best, worst,
and most likely estimation and combat our natural optimism as developers are greatly covered here.

• Manage It! Your Guide to Modern Pragmatic Project Management by Johanna Rothman. Any
book by Rothman is great to read, including the one on not doing estimations ("Predicting the
Unpredictable"). I used "Manage It!" as one of the textbooks for the project management classes
during my six years as a university professor (together with classics like "Mythical Man Month" that I
won’t list because while no list is good without this book, I don’t want to add it… well, I did it ὡ�). It is
fully packed with great advice on how to steer projects.

• Peopleware: productive projects and teams by Tom DeMarco and Timothy Lister. There are many
books on how to make teams shine, but this is the original. I arranged our first office (and even the
current one) based on the advice in this book. Much newer writings like "It doesn’t have to be crazy at
work", while good, don’t say much Peopleware did decades ago.

The list could go on and on, but I just wanted to include the books that I strongly recommend, which
helped me move forward as a software developer and recommend to the people I work with. Probably,
"Pragmatic Programmer" should be on the list too.

Great books to read | 253

254 | How to learn more

APPENDIX A: HISTORY OF
PLASTIC SCM

It is always comforting to share why we decided to create Plastic and how everything started.

It all started with a dream… and a
challenge
Back in 2002, a pair of young programmers dreamed about a better version control system while
working for Sony in Belgium, making set-top boxes for what would become digital television.

At that time, it was Clearcase that was the dominant player in the large corporations. It was good,
powerful, but difficult to use, super hard to configure, super slow when not properly set up (and it rarely
was), and extremely expensive.

The other options were mainly Perforce, which was already becoming a myth of its own, Subversion, CVS
was still around, and a little bit of Visual Source Safe in the Windows world.

We wanted to come up with something as good as Clearcase (what captured our imagination was those
dynamic views implemented as versioned virtual filesystems) but more affordable than Perforce and, of
course, easier to use and install than any of the alternatives.

Good branching and good merging had to be there too. And, the oldest of you will remind that it was
not an easy proposal at the time because many were still singing the "branches are evil" song… exactly
with the same software years later they used to say "branches rock" (ahem, Perforce).

Getting real
It is one thing to toy with the idea of creating a new product and a very different one doing what is
necessary to make it happen.

For us, it happened in 2004, after a couple of years of thinking about options, with some peaks of
intense activity and valleys of total calm. We decided to write a business plan and try to find some
investors. It was well before the kick-started is cooler wave we are into now. And, we really thought: If
nobody is going to put money into it to build it, it means it is not worth the effort.

So, we learned about business plans, carefully crafted formats (all so out-of-date by these days lean
standards), presentations, elevator pitches, numbers, and all that. Of course, time proved it was all
entirely wrong ὠ�.

A dream comes true
I quit my previous job around March 2005 to focus on a version control consulting business full-time.
Long gone were the days of Sony, and this move happened after a couple of years working as CTO for a
small company building and selling an ERP.

It all started with a dream… and a challenge | 255

We already had some contacts with potential investors since late 2004, lots of pitches, tweaks to the
plan, and participated as speakers in a few conferences, trying to build us a name as version control
experts.

It was a sunny morning at the end of June 2005, and we had a meeting on the 23rd floor of the city’s
tallest building. We had a few meetings before with Mr. VC. (He’s quite shy, so I’d better not share the
name and just use VC for venture-capitalist.) He reviewed the numbers, and he was enthusiastic about
the project and also had a huge amount of concerns. That morning we reviewed a few more numbers
with the help of his assistant, and he suddenly said: "well, I just want you to know this is going to
happen". I was speechless.

Years later, I tend to take it for granted, but when I take a moment to remember that morning when we
raised our first almost-half-a-million euros to build Plastic with nothing more than a few numbers,
documents, and not a single line of code… yes, it was a dream come true.

What came after that was a very intense year. The company was officially created in late August. The
office set up at the beginning of September. The first two engineers (they are still here) joined in
October. Then months of hard work, but with that feeling every morning was Christmas, and you had a
bunch of presents to open. Good old days.

We started using Plastic internally on February 23rd, 2006. Not long after, we had our first public
presentation to a local audience. And Plastic 1.0 was officially released in November 2006 at Tech Ed
Developers that luckily happened to be in Barcelona that year, only a 6-hour drive from our place.

Códice and Plastic
We named the company "Códice Software" because we wanted to have something that sounded Spanish
in the name (that "ó"), and at the same time, we were fascinated by the beauty of code. A codex (códice)
was a way to bring something ancient into modern-day technology. (Well, it was also when the book and
movie the Da Vinci Code came out, so… you name it).

With Plastic, it was different; we wanted a name that was easy to say in any language, didn’t have a bad
meaning, and somehow had a connotation that the product was flexible and a container to protect the
code. Plastic seemed right. Of course, the .com domain was taken, and SCM was a good choice. SCM
(Software Configuration Management), was a serious thing to do back in the ALM days. Now, I prefer to
think of SCM as simply meaning Source Control Manager, but that’s a different story.

Fast forward 15 years, and a recent awareness campaign of the National Geographic that reads "Planet
or Plastic" makes me wonder if it was the right name ὠ�

Plastic 1.0, 2.0 and first international
sales
2007 and 2008 saw our first customers coming in. Well, the first paying one happened before the end of
2006, just a few months after the official launch if I remember correctly, but I think he didn’t actually pay
until a few months later, already in 2007.

As I said, we started getting visitors, evaluators, doing all kinds of wrong things on the sales and
marketing side, and closing some deals.

I always thought Plastic was too expensive for small teams back then and that it would have been better

256 | Appendix A: History of Plastic SCM

to give away tons of free versions, but we had bills to pay, and cash flow was king. Yes, probably short-
sighted but I’m not sure we had any options.

We got our first customers outside Spain in late 2007 and our first salesperson in the US in early 2008.

We actually achieved Capability Maturity Model Integration (CMMI) Level 2 in 2007 and became the first
Spanish SME to do so, combined with the fact that we were one of the few that achieved that
certification using SCRUM; we grabbed some local headlines!

VC time
We soon started to realize that we would need additional funding. We were about seven to eight people
in 2008. We tried several options and then met, by total chance, Bullnet Capital, a venture capital firm
focused on high-tech companies. They liked what we were doing way out in nowhere in Boecillo Park,
and things started to move forward.

I remember when we got the go in October 2008, and suddenly, the world economy started to crash.
Every single day there was bad news, so we were horrified at the thought that we would never get the
investment. Fortunately, the events of 2008 didn’t have much to do with Bullnet, and the money was in
the bank in early 2009.

Growing up – the road to 4.0
Since then, we have tried many different things. Some went fine, some others didn’t. We had a full 5-
person sales team in the US in 2010. We tried PR, analysts, direct marketing, targeting enterprises, email
marketing…

Plastic was growing up from 2.0 to 3.0, and then the long road to 4.0 started.

I haven’t mentioned it yet, but our first business angel decided to invest in us almost the same month
the first Git was released! A version control platform made by Linus Torvalds himself. Sounded like
trouble, and actually, it was.

Versions up to and including 3.0 all implemented per-item merge tracking. The thing deserves its own
series on its own, but it basically means that you can merge a single file from a branch, checkin, then
merge next. It was super-flexible but a pain in terms of speed: You merge 20k files, you need to calculate
20k trees. This is what Perforce still does and the reason why its merging is slow. And exactly the same
reason why we have replaced Clearcases all over the world because of their "hours to complete a big
merge". The opposite approach is per changeset merge tracking, and that’s what Git did and what we
decided to do in mid-2010. It was a huge redesign and a huge risk. Time proved that we were right
because it allowed us to easily sync with Git and speak their protocol.

Soon after releasing the first betas of 4.0, we got our first +1000 seat operation in South Korea. A mobile
phone manufacturer decided to replace their Clearcase with Plastic. We grew popular thanks to these
folks. 1000 developers on the same small set of repositories (less than 10), all working on a single
project. Repos contained everything from the Linux source code (Android) to the quake code (don’t know
why, a game or a test?) to grow larger than 700k elements on a single working copy.

Plastic graduated as a scalable version control capable of dealing with big loads. It wasn’t hard to
convince the skeptics after that ὤ�.

VC time | 257

A mature solution
2012 till now, saw Plastic 4.0, 5.0, 5.4, 6.0, 7.0 and new products spawning like SemanticMerge, where we
finally released all our ideas about how to do better merges.

The frantic early days are now long gone, although most of the spirit (and team members who made it
happen) are still here.

When we look back, we see how crazy it was when we called a team of ten large and how nowadays the
dev team is not even notified if a customer with +200 users signs up until the next all-together meeting.

Of course, most of the greatest features and improvements happened in this latter period and are still
happening every day. We learned a lot about making things simpler, about product design, testing,
optimization, performance, merge cases, merge tools, and all the things that, together, make Plastic.

We are still the smallest team in the industry creating a full version control stack, evolving it, and
ensuring it is worth it compared to the huge alternatives like GitHub/Lab and the likes.

But, from the story telling point of view, I think you get a good idea of how Plastic was created and
evolved over the last few years.

258 | Appendix A: History of Plastic SCM

APPENDIX B: PATTERN FILES

 — Chapter by Miguel González [https://www.plasticscm.com/company/team#miguel-gonzalez]

Pattern files are plain-text files that contain rules, one per line, to match files according to their paths.
There are currently two kinds of pattern files in Plastic: The filter pattern files and the value matching
pattern files.

Filter pattern files
These pattern files apply to the workspace tree or pending changes to specify how items should be
filtered.

These include:

• Ignored files (ignore.conf)

• Cloaked files (cloaked.conf)

• Hidden changes (hidden_changes.conf)

• Writable/read-only files (writable.conf and readonly.conf)

◦ These two files apply to the same action (set the item as read-only)

◦ The first one (writable.conf) takes precedence over the second one (readonly.conf)

Each of these files contains one pattern per line. Plastic SCM will check the path of each item to see if it’s
affected by the set of rules. You can comment lines by placing the # character at the beginning of any
line.


Keep in mind that any filtered directory will filter their complete subtree. This means that if /src/lib
is filtered, /src/lib/core.h and /src/lib/module/main.c are filtered as well.

Rule types
Absolute path rules

Allows you to match a single file or directory:

Filter pattern files | 259

https://www.plasticscm.com/company/team#miguel-gonzalez

The following would match the *complete workspace tree*:
/

The following would match:
* /src/main/test
* /src/main/test/com/package/BasicTests.java
/src/main/test

The following would only match:
* /src/lib/server/Main.java
But it would skip these:
* /Main.java
* /src/lib/client/Main.java
/src/lib/server/Main.java

Rules with wildcards

You can customize the Absolute path rules with wildcards:

• * will match any number of consecutive characters except the directory separator /

• ** will match any number of consecutive characters, including the directory separator /

• ? will match a single character, excluding the directory separator /

The following would match:
* /src/lib-3/main.c
* /src/samples/number-3/main.c
/src/**-3/main.c

The following would match:
* /doc/public/toc.tex
* /doc/public/chapter-1.tex
/doc/public/*.tex

The following would match:
* /src/lib/code.c
* /src/lib/coda.c
/src/lib/cod?.c

Catch-all rules

A subset of the rules with wildcards, these rules are equivalent and they will match the complete
workspace tree:

• /

• *

• /*

• */

• **

• /**

• **/

260 | Appendix B: Pattern files

Item name rules

Matches files or directories according to their names.

The following would match:
* /src/lib
* /src/lib/client/main.c
* /src/lib/test
* /references/lib
* /references/lib/libgit2.so
lib

The following would match:
* /src/lib/references.c
* /references.c
* /doc/main/references.c
references.c

Extension rules

These rules match files according to their file extension.

The following would match:
* /src/main/java/com/samplepackage/Main.java
* /examples/ReferenceList.java
*.java

The following would match:
* /bin/client/resources/core.en.resx
* /out/bin/server/resources/networking.en.resx
^*.en.resx$

Regular expression patterns

When everything else is not enough, you can fall back to regular expression matching. The only
requirement for this is to ensure that the pattern starts with the line start symbol for regular
expressions (^) and it ends with the line end symbol ($).

The following would match:
* /src/doc/sample-3528.txt
* /sample-1.txt
^.*\/sample-[0-9]+.txt$

The following would match:
* /bin/dir-0xC0FFEE/main.c
* /publish/bin/dir-0xDADA_/backend.cpp
^.*\/dir-0x[A-F0-9]+_?\/[^\/]+$

Filter pattern files | 261

Include / Exclude
All rule formats we previously discussed work positively; if the item path matches the rule, the result is a
positive match, and Plastic SCM will apply the filter to that item. However, there are situations where you
want to use the rule negatively, that is, exclude the item from the filter. This is particularly useful when
you wish to filter a directory but keep some of its files out of the filter.

These rules are identical to the regular inclusion rules, but start with the ! character.

!/src/lib
!/main/bin/compiler.exe
!*.h
!references
!resources.*

Pattern evaluation hierarchy
Plastic SCM will try to match the path of an item using the patterns in the file in a predefined way. This
means that some pattern formats take precedence over others rather than processing the patterns in
the order they appear in the file.

1. Absolute path rules that match exactly

2. Catch-all rules

3. Name rules applied to the current item

4. Absolute path rules applied to the item directory structure

5. Name rules applied to the item directory structure

6. Extension rules

7. Wildcard and Regular expression rules

Directory structure matching

"Directory structure" means, in the list above, that the rules are applied to the full list of directories
above the current item.

For instance, if the current item path was

/src/main/java/com/codicesoftware/sample/SelectedItem.java

any of these two rules would match its directory structure:

/src/main/java
codicesoftware

The first one, /src/main/java, partially matches the directory hierarchy of the current item. The
second one matches the name of one of the parent directories of the current item.

262 | Appendix B: Pattern files

Include / Exclude rules order

Exclusion rules (ones that start with !) take precedence over include (or regular) rules, so they are
matched first.

There are two exceptions to this. The first one applies to absolute path rules that match exactly the
current item. In this case, the include rules are applied first.

For example, if we used these rules:

!/
/src/test/testdata.zip

The item /src/test/testdata.zip is filtered even if we explicitly prevented the whole workspace
tree from being filtered.

The second exception applies to absolute path rules applied to the item directory structure. In
this case, the most precise rule is the one that takes precedence.

For example, if we used these rules:

/src
!/src/client
/src/client/bin

Files like /src/build.sh or /src/client/bin/output.so would be filtered, but files like
/src/client/socket.c wouldn’t. This is because /src/client/bin is a more precise match than
/src/client, which is, in turn, more precise than /src. In this case, you can also consider
precision as the length of the matched substring.

We’ll use this tree in the next few examples:

Filter pattern files | 263

.
| #build.txt
| Makefile
+---doc
| | #build.txt
| | Makefile
| | manual.pdf
| +---pub
| | chapter1.epub
| | chapter2.epub
| \---src
| chapter1.tex
| chapter2.tex
| toc.tex
\---src
 | #build.txt
 | operations.build.sh
 | README.txt
 +---client
 | | command_line_args.c
 | | main.c
 | \---gui
 | window.c
 \---server
 libgit2.so
 socket.c
 socket.h

264 | Appendix B: Pattern files

Example 1. Directory structure matching

To see the directory structure matching in action, let’s say we’d like to filter all but the /src
directory, but inside of it, filter the /src/client/ directory as well. Finally, we’d like to keep
/src/client/gui. Here’s how:

/
!/src
/src/client
!/src/client/gui

This is the resulting tree:

.
\---src
 | #build.txt
 | operations.build.sh
 | README.txt
 +---client
 | \---gui
 | window.c
 \---server
 libgit2.so
 socket.c
 socket.h

As you see, the longest matching rule takes precedence over the rest when only absolute paths are
involved.

Example 2. Exclude / include precedence

If we added this rule to the set above:

*.h

It wouldn’t affect /src/server/socket.h because it’s excluded by !/src, and exclude rules take
precedence over include rules.

Example 3. Full path match

There’s a way to filter files affected by an exclusion absolute path rule. However, that requires exact
path matching.

To filter /src/server/socket.h, we just add that particular path to the set of rules:

/src/server/socket.h

That’s the only include rule that takes precedence over all of the rest.

Filter pattern files | 265

Example 4. Name rules

If there’s a recurring file name that appears over and over again, you might want to filter it using
just the name:

Makefile

The rule above will filter all Makefile files in your workspace.

Example 5. Wildcards

What if we’d like to apply a more complex filter, such as "all files with oc in their names, and a
single-letter extension"? Easy, use wildcards!

**/*oc*.?

This would filter out /src/server/socket.h and /src/server/socket.c but it wouldn’t match
/doc/src/toc.tex because its extension has 3 characters!

That’s also the way to match files whose name starts with the # character. As we said before, that’s
how comments are specified… so how would you filter all those #build.txt files?

One way to do it is using extension rules:

*.txt

But, that would filter all text files in the tree. To make it more precise, use this instead:

**/#build.txt

Value matching pattern files
This kind of pattern files assigns a value to items that match the specified patterns. It’s suitable for
functionality that doesn’t work in a yes/no fashion, such as assigning a file type (binary compared to
text).

These include:

• Compression type (compression.conf)

• EOL sequence conversion (eolconversion.conf)

• File type (filetypes.conf)

These files also contain one pattern per line. Plastic SCM will check the path of each item to find out
whether it matches any of the rules to return the assigned value.

Lines in these files will contain rule/value pairs. The separator sequence changes across files:

• filetypes.conf uses : as the rule/value separator

266 | Appendix B: Pattern files

• compression.conf and eolconversion.conf use whitespace as the rule/value separator

Pattern types are limited to four: file extension, file name, file path, and wildcard rules.

You can comment lines by placing the # character at the beginning of any line.

Rule Types
Extension rules

These rules are the exact extension of the files to match. This applies to the characters after the last .
in the file name.

Example 6. compression.conf

.png none

.c zip

.cpp zip

Remember that values such as .en.resx or .in.html won’t match any file because the matching
engine will receive .resx and .html as the item extension for those examples.

In this example, files such as /theme/images/background.png or /wwwroot/img/top1.png will never
use compression, whereas files such as /src/client/main.cpp or /src/lib/core/threadpool.cpp
will always use GZip compression.

Path rules

These rules compare the full path of the current item with the value of the rule. If both match, the
process will assign the related value of the current rule to that item.

Example 7. eolconversion.conf

/src/main.c auto
/lib/core/Calculator.cs CRLF
/src/main/java/com/codicesoftware/sample/Main.java LF

These type of rules is very easy to see in action, since the rule matches exactly the item path.
/src/main.c will use automatic EOL conversion, /lib/core/Calculator.cs will convert all its EOL
sequences to CR+LF and /src/main/java/com/codicesoftware/sample/Main.java will convert them
to LF.

Name rules

Similar to the path rules, the name rules use exact matching of the item name.

Value matching pattern files | 267

Example 8. filetypes.conf

header.png:bin
README.md:txt

Here, files like /my-app/wwwroot/img/header.png and /images/header/header.png would always be
set as binary, whereas files such as /README.md or /src/doc/README.md would be always set as text.
Any other file would have its file type detected from its name and contents.

Wildcard rules

Finally, path rules can be enhanced with the special sequences defined in "Rules with wildcards" in
the Filter pattern files section:

• * will match any number of consecutive characters except the directory separator /

• ** will match any number of consecutive characters, including the directory separator /

• ? will match a single character, excluding the directory separator /

Example 9. compression.conf

/**/images/**/*.* none
/src/client/core/lib_01.? zip

If you apply this compression filter, files like these will never use compression:

• /wwwroot/dist/images/mandatory-intermediate-directory/img.png

• /doc/images/builder/readme.txt

These other files will always use GZip compression:

• /src/client/core/lib_01.c

• /src/client/core/lib_01.h

• /src/client/core/lib_01.o

Pattern evaluation hierarchy
Plastic SCM will try to match the path of an item using the patterns in the file in a predefined way. This
means that some pattern formats take precedence over others, rather than processing the patterns in
the order they appear in the file.

1. Path rules

2. Name rules

3. Extension rules

4. Wildcard rules

268 | Appendix B: Pattern files

Example 10. filetypes.conf

compile.exe:txt
/src/main/bootstrap/compile.exe:bin

In this example, /src/main/bootstrap/compile.exe would be binary, but any other compile.exe file in
the tree (for example, /build/release/compile.exe) would be text.

Example 11. eolconversion.conf

/src/java/**/*.* LF
.java:auto

In this other example, any file under /src/java/<subdir>/ would have its EOL sequences forcefully
converted to LF. For example, /src/java/main/com/sample/README.txt or
/src/java/test/resources/res.xml

Also, all .java files in the tree would have their EOL sequences handled automatically, for example,
/main/Program.java or /src/module/first/Connection.java

And finally, since exception rules take precedence over wildcard rules, .java files inside
/src/java/<subdir> will also have their EOL sequences handled automatically. For example,
/src/java/main/com/codicefactory/writers/PlasticStreamWriter.java or
/src/java/test/complex/ExtremelyRareScenarioTest.java.

Value matching pattern files | 269

270 | Appendix B: Pattern files

APPENDIX C: ALTERNATIVE
BRANCHING STRATEGIES AND

SOLUTIONS TO FREQUENT
PROBLEMS

We always recommend task branches blended with trunk development as a straightforward and
effective way of working, but other alternatives are worth considering.

Not all teams can directly jump to a practice requiring effective automated testing and a CI system.
Sometimes, tests are not automated, or builds are too slow.

This chapter describes alternative working patterns and how to use them as an alternative to task
branches or as a starting point to evolve to simpler and more efficient practices.

Branch per task with human integrator

Cycle definition
Consider this as a prequel to the "Branch per task pattern" I explained at the beginning. Everything is
about one task per issue in the issue tracker, tasks being independent, short, checkin often and so on
holds true. The only difference is in this variation, the integration phase, the merge, is performed by an
actual team member instead of a mergebot or CI system.

We used to work this way. In fact, we followed this pattern for years with a great degree of success. Task
branches combined with an integrator in charge of merging every branch back to the main or the
release branch at hand. We only moved past it when we finally automated the merge process with
mergebots.

I think I’ve drawn the following graphic a hundred times over the years and explained it in many
different places, from meetups and product demos to classrooms during my days as a university
professor.

Branch per task with human integrator | 271

Task

Task 1098
Task 1099

Task 1102

Task 1098

Task 1099

Task 1102

Release x+1

R
elease x

Unit & GUI tests

Unit Tests

GUI Tests

Integration tests

for each task

work on tasks based
on a well-known
baseline

developers’ work

Version controlis key to map
tasks/issues to SCM artifacts
(branches, changesets), to
version daily work, to help
switching activities, to explore
changes, find bugs searching in
code, run peer reviews...

team’s work

The project manager,
developers and testers
introduce tasks.

Everything is a task
and will be tracked
with version control.

Stack of finished tasks,
all under version control

pre-release

Merge
tracking is
key here!

When all
tests pass
successfully

Tasks that fail can be rejected
and integrated in a later cycle

integrator’s work

Issue tracking

Proj. management

IDEs

Build tools

Scrum
master

Developers

Developers

Integrator
(release engineer)

Test
group

Task

Sprint backlog

Version
Control

Sprint

2 to 4
weeks

24
hours

Sprint
Daily

Meeting

• It all starts with a task, usually coming from the sprint backlog if you are using scrum, but it can be
taken from a Kanban board or any other project management mechanism you use. As I described in
the chapter about task branches, it is important to note how every single task branch has a one-to-
one relationship with an entry in the issue tracker. Depending on how prescriptive and hierarchical
your team is, everyone will enter tasks or only some designated members.

• Every developer takes one branch, works on it, and marks it as done when they finish. Tasks are
tested individually. It can happen thanks to a CI system (recommended) or because of tests manually
triggered by developers.

• Then, at a certain point, a stack of finished tasks exists. Of course, the smaller the stack is, the fastest
your team will move. And here is where the integrator enters into the scene. The integrator takes the
list of pending branches to be merged and merges them, resolving any possible manual conflicts
thanks to their project experience or asking the involved developers to help. Fortunately, the
percentage of manual conflicts is small, and conflict resolution is normally the smaller of the work
efforts in the integrator’s bag.

• Once the branches are merged, the integrator creates a "pre-release" and launches the test suite
(with some ad-hoc batch system or with the help of continuous integration software).

• When all tests pass, and a new version is created and labeled, the developers will use it as starting
point for the new tasks they’ll work on.

272 | Appendix C: Alternative branching strategies and solutions to frequent problems

How it looks like in practice
The day of the integrator typically starts with a list of tasks to be merged. The integrator takes them
from the issue tracker (list of finished and not released tasks) or through a query to Plastic SCM if
branches are tagged with their corresponding status.

status: done

main

BL101

task1213

task1209

status: done

In the figure, the integrator has to take care of merging task1213 and task1209. They can start with
task1213 and merge it to main. In this case, there’s no possible conflict between main and task1213.

status: done

main

BL101

task1213

task1209

status: merged

Before actually confirming the merge (checkin the result of the merge from his workspace), the
integrator will typically build and test the project. This really depends on how fast tests are. In our case,
we used to run the test suite manually after every task branch was merged to main and before checkin.
This was before having tenths of hours of automated tests when the suite just ran in about 5-10
minutes.

Branch per task with human integrator | 273

Of course, having a human integrator doesn’t mean they have to trigger tests manually. For example, a
CI system connected to the repo could have tested task1213 and task1209 so these two branches would
only be eligible if the tests pass. A caveat, though, and we experienced this ourselves, is that those
branches are typically tested in isolation instead of merged with main. And, if you already automate that
step, then the manual integrator is rendered obsolete (as happened to us) because there’s no real
reason not to let it merge back to main too.

Anyway, in our human integrator scenario, the integrator checkins the merge from task1213 to main
once they consider it is good enough. Notice the integrator doesn’t label the changeset because another
task is queued to be merged. Since the process is manually driven, grouping tasks makes a lot of sense
(and it is a good reason to automate the entire process and avoid turning new versions into events that
can slow down the whole cycle).

Then the integrator decides to merge task1209, run tests, checkin, and if everything goes fine, label
BL102, which will be used as the next stable starting point for the developers and be published and/or
deployed to production.

status: merged

main

BL101

task1213

task1209

status: merged

BL102

When I say the new BL102 will be used in the next iteration, I don’t mean developers were stopped while
the release was created. They could safely continue working on existing tasks or create new ones
starting from BL101 since BL102 didn’t exist yet.

The branches started from BL101 don’t need to be rebased to BL102 unless they are in conflict, and since
there is a human integrator, this merge is normally not requested because the integrator will solve the
conflicts during the merge phase.

While merging task1209, the integrator might have found conflicts that required manual intervention. In
small teams, the integrator can play a rotating role among experienced developers, so they’ll be able to
handle most of the merge conflicts. If not, if the integrator doesn’t really know how to solve a given
conflict, they’ll ask the author of the changes to reconcile the changes correctly.

The integrator decides to checkin after the merge of each task branch, but in Plastic, they are not forced
to work this way (as they are in Git, for instance).

An alternative merge scenario would be as follows, where both task1213 and task1209 are merged into
the same changeset.

274 | Appendix C: Alternative branching strategies and solutions to frequent problems

status: merged

main

BL101

task1213

task1209

status: merged

BL102

In our experience, the disadvantage of doing this with manual merges is that you can be forced to undo
more merges that you would like to. Suppose you have ten branches to merge. You have been building
and launching tests manually for each of the first six. Then, the tests of the seventh fail after they are
merged. If you undo changes now, you’ll undo the six previous merges. While the result looks cleaner
because there is a single changeset for all the branches, it can be a great inconvenience if something
fails.

Pros & cons
Having a human integrator has several pros and cons.

Pros Cons

There is always someone in control of all merges, so there
are few chances someone merges quick and dirty because
they are in a hurry and need to leave.

It doesn’t scale. I don’t mean this is only for small teams.
I’ve seen it happen in large ones too. The problem is that
the cycle you can implement is not fast enough to achieve
true DevOps. Every single manual step slows down the
whole project.

Creating a new release becomes an event. "Hey, Ms.
Integrator, please wait for task1211 because we do need it
in the next version". Sound familiar? If the process is
automatic, there is no need to wait. You’ll have a new
version today and a new one tomorrow (or maybe even a
bunch of them), so there is no need to wait.

Most team members don’t need to merge daily, which
greatly simplifies onboarding. Developers without a solid
understanding of merge can easily work just doing
checkins to their branches, not worried about how they’ll
be merged.

Sometimes (not always), some merges can become
complicated since developers are not preoccupied with
solving them themselves.

With a fully automated cycle driven by the CI system or a mergebot, you get a scalable process where
releases happen continuously.

The only downside I can think of is that every developer will need to eventually merge down some
changes to solve a conflict, something they were shielded from with a human integrator. And, of course,
since everybody can merge, there’s not the same level of confidence that a wise integrator will always
get the merges right. But good test suites seem to handle that pretty well. The world has moved towards

Branch per task with human integrator | 275

automation for a reason.

When to use it
A good branch per task cycle with a manual integrator is a good first step towards full continuous
delivery and DevOps. I wouldn’t use it as a final goal but as an intermediate step or starting point.

If you’re not using any sort of branching pattern and experience frequent broken builds and
regressions, this workflow will help you move forward if you don’t have enough tests or infrastructure
for a fully automated alternative.

Mainline only for unmergeable files
Mainline is when an entire team directly does checkins on to a single branch, typically main.

It is easy to confuse this with trunk-based development, although I believe they are radically different.

Most teams doing trunk-based nowadays don’t checkin directly to main. Instead, they use proper task
branches if they are in Plastic, or they commit locally then push if they are on Git. In this second
alternative, their local branches are their real working branch (the equivalent to the task branch in
Plastic, although less organized, in my opinion). They never checkin to the master on the remote site
simply because Git doesn’t allow it by design.

That being said, I’d only use mainline to work with files that need to be locked because they can’t be
merged, as we saw in "Locking: avoiding merges for unmergeable files".

Task branches don’t impose a big burden, come with lots of flexibility, and are way better than mainline
in all circumstances except when locking is necessary.

Release branches
All through the book, I used the main branch as the integration spot for the task branches. But, we often
find teams that use release branches to stabilize the new versions before actually releasing, or simply
have a spot to safely and quietly perform the merges before moving to main.

A typical scenario with release branches is as follows:

• Task branches start from the stable release, typically labeled on main.

• But they are merged to a release branch instead of directly to main.

• This allows the team to keep main clean.

• And releases to progress and take its time.

276 | Appendix C: Alternative branching strategies and solutions to frequent problems

main

BL101

main/scm2001

BL102

main/scm2010

release102

We used release branches ourselves very often before we moved to full automation mode.

The release branch was useful for the human integrator because:

• Creating a release took some time, so if something super urgent happened, main would be clean to
start a different one with the hotfix in parallel.

• If things go wrong with tests or the code itself or last-minute fixes, the integrator could apply small
changes directly to the release branch without passing through the entire cycle. This is, of course, a
slight cheat, caused by the fact that manual releases took time.

I usually don’t recommend this model anymore if you implement a fully automated cycle for many
reasons:

• It is easier to automate a simple workflow where task branches are simply merged to main, without
creating intermediate steps. Here laziness matters ὤ� but also keeps things simple.

• If new releases can be created continuously, one per task branch, it doesn’t make much sense to
create an intermediate new integration branch. I mean, release branches make sense when you
group tasks together, but automation renders that irrelevant because every single task can be
merged, tested, and released. Hence, with automation, these intermediate steps don’t make much
sense anymore.

They can be very useful, though, if you can’t achieve full automation for whatever reason if you need to
group branches to be tested because tests are too slow, or even in more complex cases where several
releases need to be created in parallel from the same codebase.

Maintenance branches
What is the best way to maintain older versions of your product while you evolve a newer one?
Branching can definitely help here, but there is a big warning to keep in mind: The actual limitation to

Maintenance branches | 277

handle parallel versions is not the version control but the actual amount of work your team can handle.
Dealing with parallel versions is extremely time- consuming and can expand to use all the available
resources until nothing is left to produce new meaningful work.

A typical maintenance layout
Here is the typical layout and evolution of a maintenance branch:

main

3.0.151 4.0.24.0.1

3.0.152 3.0.153

4.0.3 4.0.3

fix-3.0

• The main branch was version 3 until version 3.0.151.

• At this point, a new branch fix-3.0 was created, starting from 3.0.151.

• From there, main continued evolving, this time turning to 4.0. New versions 4.0.1, 4.0.2, etc. are
created later. Most likely, some of the initial 4.x versions were not yet public to everyone, or even not
public at all, but they are created frequently due to the result of the development iterations,
exercising the entire DevOps cycle.

• In parallel, 3.0 continues evolving, usually only with bug fixes. This way, 3.0.152 and 3.0.153 are
created and deployed to production or delivered to customers depending on the nature of your
software.

• Note how the new 3.0 versions are always merged to main. This is because a bug found on a
maintenance branch also affects the development version, so it needs to be applied.

Of course, the Branch Explorer diagram above is a simplification that only shows the primary branches.
A more realistic view would be something like the following diagram shows: Short-lived branches all
around being merged to 3.0 or to main depending on whether they apply to one or the other line of
development.

278 | Appendix C: Alternative branching strategies and solutions to frequent problems

main

3.0.151 4.0.24.0.1

3.0.152 3.0.153

4.0.3 4.0.3

fix-3.0

fix-3.0/bug1901 fix-3.0/bug1941

main/tsk4003

main/tsk4007

Simple proposal for maintenance branches
This is how I summarize our proposal to deal with maintenance releases:

• Keep the evolution on main. Other alternatives include evolving the new 4.0 on a dedicated branch
and merging it to main only when it is stable enough and then swapping lines there, creating the 3.0
maintenance branch from the last changeset before the 4.0 merge. We have done that ourselves
several times over the years, but honestly, I now consider it an overdesign. It is much simpler to
reduce the number of branches to keep it simple.

• Keep maintenance on fix branches. Branch off when you decide from this point onwards that main
will be the next version. It can be the moment before activating an important feature, a big UI
change, etc.

The following figure summarizes the proposal:

Maintenance branches | 279

main

Latest release evolves on main

1.0.1 1.0.2 1.0.3

Branch off to maintain the
now older release. Keep
new devel (2.0) on main.

fix-1.0

1.0.4 1.0.5 1.0.6

2.0.1 2.0.2

2.0.3 2.0.4

fix-2.0

3.0.1 3.0.2

When to merge maintenance branches back
There is a really straightforward rule of thumb:

• You can merge fix-xxx back to main as often as you need to apply new bug fixes or improvements.

• But you can’t ever merge main to fix-xxx, or you will convert fix-xxx in your new version, and that’s
something you don’t want to do.

This might sound obvious, but I want to make it crystal clear.

main

Branch off to maintain the
now older release. Keep
new devel (2.0) on main.

fix-1.0

fix-2.0

You never merge down from main to fix-1.0, never from main to fix-2.0, and never from fix-2.0 to fix-
1.0. Otherwise, you won’t be turning 1.0 into 2.0, or 2.0 into 3.0, etc.

Now, the merge upwards from older to newer releases is safe and should happen often.

One of the challenges you find when you have several open parallel lines of work is when to perform
these merges.

Our internal rule is:

280 | Appendix C: Alternative branching strategies and solutions to frequent problems

• Treat fix-xxx branches as task branches. Whenever there is something new on fix-xxx, merge it to
its parent branch.

• This way, we eliminate the risk of missing an important fix made on an older release.

Not sure if I really made it clear. The alternative to this "merge immediately" might be: remember to
merge (or automate it using your CI) the fix-xx into its parent the next time you create a new release on
the parent. Ok, I’ll try again with the example above: Whenever you make a new version in main,
remember to check pending merges from fix-2.0. This alternative mainly works for scenarios with
human integrators because if your process is fully automated, there’s not really a need to delay the
merge. As soon a new version is ready in fix-2.0, it should trigger a new one in main.

As you can see in our example, a new version labeled in fix-1.0 will trigger a cascade of new versions in
fix-2.0 and main. That’s pretty normal because it can be a bugfix in code still shared by the three
versions.

Problems with maintenance branches
As I said at the beginning of the section, maintenance branches are problematic. And I don’t mean they
are from a branching perspective; Plastic will treat them as it would with any other branch but from an
organizational level.

Maintenance branches were a hot topic in desktop software because new versions were released only a
few times a year or even every few years, and upgrading had a licensing and business impact.

Nowadays, the Cloud and SaaS are a reality for many teams, and the branching strategies were greatly
simplified in that sense. You don’t really expect to use the previous version of a hosted service, but to
seamlessly use the latest version as soon as you keep paying the subscription.

Under that premise, it is less and less worthwhile to maintain version 3.0 when 4.0 is already in
production since there’s no business need for that.

In the end, the entire DevOps philosophy is all about achieving a fast pace of small changes that go
immediately to production, so the big jumps between versions become something of the past. It is more
about a single main branch evolving through time than about taking care of parallel versions.

That being said, there are a few things to keep in mind:

• Not all teams develop SaaS cloud-hosted software, so maintenance releases can still be a big thing
for many of you.

• Even in Cloud, sometimes it is important to roll out two different versions to production, so the new
one is deployed only to a designated group of users to validate it, while the bulk of users continue
with the older one. If the test takes a few weeks to complete, you likely need to support parallel
evolution in the two versions. Of course, a maintenance branch for the old one will help. But the
good news is that it is very likely that this maintenance branch will be extremely short-lived (a few
weeks at most), and you’ll rarely have to deal with more than two parallel lines of development.

The big problem with maintenance branches is when they start to pile up. It is no longer a big issue for
most teams, but some enterprise software and server and desktop applications can still be impacted.

I mean, what happens if every few months you launch a new major version due to business
requirements, and then you find yourself having to maintain 3.0, 4.0, and 5.0 while evolving the
upcoming 6.0?

The problem, as I repeatedly said, is not really the branching and merging themselves, but the fact that

Maintenance branches | 281

your team will have split its focus to develop in four different lines of work (unless you have a dedicated
team for each version, which in my experience is a nice rarity that almost nobody benefits from).

This split in focus means dealing with continuous context switches (3.0 might be arcane and odd by the
time 6.0 is under development) and a huge negative impact on productivity.

I had the chance to visit teams where they had the impression (backed by numbers) that they could not
get anything new done because they were constantly fighting too many open fronts to maintain old
releases.

The solution doesn’t come from a technical alternative but from a strategic decision: Try to minimize the
number of open versions. Yes, this is much easier said than done, but if you are the CTO or technical
lead, you should really strive for this simplification. Does the business benefit from not upgrading
customers to newer versions if they don’t pay for the upgrade? Can’t sales simplify the process? Maybe
target more aggressive discounts to ensure everyone benefits from the newest and better versions
instead of being stuck with an old dinosaur?

Even in the most organized and test-aware teams, a version from five years ago will be lacking. Probably,
the old test suite is now harder to run because of some infrastructure changes (the old tests were not
ready to run in the cloud while the new ones can), or the old version has far more tests than the new
one, etc. So, touching the now outdated version is a nightmare for everyone. It doesn’t mean branching
it is harder than creating a task branch on the current version. Plastic doesn’t care about that; it is about
the actual cost for your team.

The ideal is, of course, to have a single running version and really minimize bugfixes on the old ones as
much as possible (to zero if you can afford it). Probably, during the first few days of the new version
being public, you still have to do some fixes or small improvements in the previous, but this is a
temporary situation, and the old one will be naturally frozen in a few weeks.

Of course, there is always an equilibrium: It is better for the dev team to immediately mark old versions
as obsolete when you launch a new one, but forcing all customers to upgrade might be a nightmare for
them sometimes unless you ensure the transition is super smooth. Sometimes, you have a new and
much better version, with a greatly improved UI and many new features, but the cost of change for
some customers is high, and they prefer not to invest in the change. Telling them "no" and forcing them
to upgrade might be good from a programmer’s perspective, but it would mean not really putting
yourselves in the customer’s shoes which is never a good choice.

If that’s the case, you’d be forced to deal with the older release unless you really plan this in advance and
ensure that upgrades roll out seamlessly and frequently to prevent big jumps down the road.

As you can see, the challenges of maintenance releases go far beyond branches and merges and well
into product and project management, sales, and overall business vision.

Where to apply bugfixes
Suppose that you find yourself with two or more maintenance branches open in parallel plus the main
development for whatever reason mentioned above.

What happens when a new bug shows up?

The team must find which is the older version affected and apply the fix there.

Yes, it might sound crazy and extremely time-consuming if you have many parallel open versions, but
that’s why exactly you should try to minimize that number.

My advice here is:

282 | Appendix C: Alternative branching strategies and solutions to frequent problems

• Locate the older open version affected by the bug (I stress the importance of "open". It is not about
being a software archeologist and finding that the bug affects a version from 10 years ago and
branch from there if it is no longer supported).

• Create a task branch from the latest on that maintenance branch.

• Code and test the bug fix.

• Merge it to the maintenance branch following the regular procedure, passing tests, etc.

• Cascade merges up until main, creating new versions of each maintenance branch.

Then, it is up to you, and your business needs to decide if you release all those versions; but, from a
technical perspective, you are giving a solution to the business folks, and you are covered. You give the
business the right tools. Now it is a matter of using them wisely. The opposite, creating the new releases
only if someone complains, is a worse choice if your process is fully automated. If it is manual, then
saving time must be worth it.

Please note I’m talking about merging changes, not cherry picks.

I once visited a team developing a huge set of products based on a shared codebase, and they had a
complex procedure and set of tools to cherry pick bug fixes among the open versions they had. It was
extremely time-consuming and complex and hard to keep up to date and to really understand what was
going on. Try to avoid that path at all costs.

How we do it with Plastic SCM
Since we develop on-premises software (we have a Cloud version too, but you can set up your own
server so the upgrades are outside our control) involving servers and desktop apps, we were
traditionally hit by the problem of maintaining old versions.

It was very common to try to group new features and only make them visible when the new big release
came out. This was a practice we all saw promoted by the big software companies for decades, and
somehow, we all had considered it to be a good way of working.

But, it had a few big problems:

• First, we could be working for months on new things nobody was seeing. It could be November, and
new teams evaluating Plastic were downloading the "stable version" from February, missing all the
new improvements made during the interval. Sometimes we were shocked to see how old the
customer’s version was since we were all used to the new features.

• Constantly splitting time between doing releases for stable and new software.

The solution was to create frequent public releases weekly with both fixes and new features and roll out
new things during the year instead of waiting to group them all together.

Customers are not forced to upgrade every week, of course, so they can choose their own pace.

We don’t have to worry anymore about not making things public to have a "big release with tons of
changes" at a given date.

Marketing and sales still like to see major versions coming. So, what we do is:

• Every January (sometimes it can be delayed a little bit), we change the major version. We go from 6 to
7, 7 to 8, etc.

• The early 7.0 is exactly the same as the latest 6.0, adding the minor fixes and improvements that go
into every release.

Maintenance branches | 283

• Over the year, the new 7.0 continuously evolves while 6.0 is frozen.

• At the end of the year, the latest 7.0 is very different and much better than the one at the beginning
of the year, but changes were rolled out progressively.

• We lose the "surprise effect" of packaging a lot of new things together.

• But overall it is better for everyone. Newcomers have access to the best possible version (so we don’t
lose someone because they can’t see a feature that is waiting in the fridge), and existing customers
see a more gradual evolution

• Feature toggles help us ensure risky changes don’t negatively impact and let us test those changes
internally or with selected customers.

Conclusion
• Try to minimize the number of parallel open versions. If your customers are okay with just having a

single version that receives updates continuously, everything will be better than trying to keep 3.0,
4.0, and 5.0 running in parallel.

• If you really need to handle maintenance branches, keep them as simple as possible and cascade up
changes creating new versions.

• Contact us to double-check your setup. We have seen many teams over the years, and very likely,
we’ll be able to help you with our experience. We’ll do our best to help ὤ�.

Branching for product variations
There is a recurring request that shows up repeatedly from some teams adopting Plastic, and it is their
intention to handle product variations with version control. They think branching is a natural way to
handle product variations and customizations.

Usually, they have a solid business based on selling custom software to their enterprise customers. Each
customer has slightly different requirements, so while a common base is used as starting point, new
development needs to be done to win the deal. And the development typically takes a few months of
work.

Product variations can certainly be handled with separate branches, but since I’m trying to be
prescriptive to be here goes my advice: Don’t use branches for product variations, use feature flags
instead.

The problem with many open development lines is quite similar to having many open maintenance
versions: They tend to drain all available time. You end up spending more time applying changes here
and there than doing new development.

The typical scenario starts as follows:

284 | Appendix C: Alternative branching strategies and solutions to frequent problems

main

A.1.0

product-A

A.1.1 A.1.2

B.1.1 B.1.2

B.1.0

product-B

B.1.3

C.1.0

C.1.1
product-C

• Development happened on main until a product is ready to be released to the customer. Product A
version A.1.0 is labeled, and then further evolution and maintenance happens on product-A branch.
In my experience, the beginnings are never that clear. If we have to import an old SVN repo, the
initial branch most likely didn’t happen in such a clear way, both probably well after product-A had
evolution and close to the point where product product-B needs to be released. For the sake of
simplicity, I’ll keep it in this "close to ideal" form.

• Once product-A is out and used in production by the customer, further development happens both in
main and product-A. Normally, main will receive a great evolution to prepare for the upcoming
product-B, while product-A only receives minor fixes. Unfortunately, very often, product-A receives
major new features to respond to customer needs.

• product-B reaches its 1.0 version and is branched off.

• Then, the story repeats for the new product-C.

• At this point, the team is actively working on four major branches. If they are lucky, product-A and
product-B won’t be much trouble, and they’ll be able to focus on C and the upcoming contract or
major core upgrades. If they are not, they’ll constantly be switching projects.

What I described so far is somewhat the starting point. But later, the team will see a bunch of parallel
lines without any confluence at sight.

Branching for product variations | 285

main

product-A

A.1.7 A.1.8

B.1.12
product-B

C.1.8
product-C

B.1.13 B.1.14

core 2.0

As the figure shows, the team is now dealing with four parallel lines of development. And now consider a
major improvement was made on main and the person responsible for each product (typically some
account manager with technical background) wants these updates to secure a renewal or renegotiate a
contract. How can you apply the changes?

• In this example, we can merge from main down to product-C since it seems we didn’t create a new
product-D yet, so the evolution might well be applied to it.

• But we can’t merge (red lines in the figure) down to product-B and product-A! Why? Because then,
we’d turn them in product-C, which normally is something teams don’t want to, very often due to
stability concerns.

• If bringing changes made on main to the other product lines was not an issue, then frequent merges
should happen frequently to push changes down to the different product lines, but that’s normally
not the case. In fact, if that was the case, why would you have three different product branches?

Since merge is normally not permitted due to the issues mentioned above, teams tend to start doing
cherry picks, making maintenance even worse and more difficult to track. Cherry picks, as described in
the merge chapter, don’t create merge tracking, which won’t simplify later merges.

286 | Appendix C: Alternative branching strategies and solutions to frequent problems

Typical challenges found in setups with multiple
product branches
Here is a list of typical problems and challenges found on teams with strategies based on branches per
product:

• Somehow, they have a core that all products reuse. The core is typically developed on main. But in
reality, this core is not that clearly defined and trying to componentize the project becomes an
unachievable goal the team has been pursuing for years.

• In some situations, we even found that main is not even stable (sometimes it doesn’t even build!),
and stabilization is done on the product branches. This is one of the reasons why trying to unify the
different products is repeatedly discarded since account managers are very scared of regressions
and the negative impact on their customers.

• Fixes are done ad-hoc on the product where they are found, and often the same fix is done more
than once by different developers, with the associated wasted effort. Teams dream of a magical
solution to identify and apply fixes correctly and avoid working twice.

• Some teams even implemented some home-grown patch system to track which patches were
applied to which products. Since merging between branches became a nightmare when not totally
forbidden, they need to do patch-based management.

• Teams are usually stuck with some ancient version control, like SVN or even CVS, which makes
merging even worse. And somehow, they expect a new version control to fit like a glove in their
environment and magically fix all their issues, which is not going to happen because their problem is
deeply rooted in their way of working, not only the version control.

• Normally, the lack of automated tests adds to the pile of problems, making every possible move or
refactor almost impossible.



Game studios reusing an engine are not a valid example of this pattern. Different titles are
sufficiently separated from each other to deserve their own evolution, and the engine is usually well
defined and handled by a core team of experts. In fact, it is more common to find each game on its
own repo instead of just as different branches. All game teams might make changes in the engine,
but they do that on a branch of the engine repo, and those changes are merged and reviewed by
the engine core team. Particular changes in the game itself, or its entire evolution are separated
enough not to be reused between teams.

Proposed solution
When we hit a situation with multiple product branches, we insist on the importance of having a
standardized product without variations. If variations are a must due to business needs, then we make it
clear they should implement it through feature toggles on a single codebase instead of having multiple
branches.

These statements are normally shocking for the teams who expected us to develop a magical solution
that simply merged all their changes and fixes in a better way.

Branching for product variations | 287

A story of penicillin and superheroes
In these situations, where the solution is not a new shiny super-advanced technology, but simply
working differently and using reliable, well-known tools in a better way, it always brings to my
mind a comic that I read when I was a kid.

I love superhero comics, but I think I never re-read this one, and somehow, I prefer to keep a
blurred and probably more beautiful idea.

I think it was in some Crisis in the Infinite Earths comic. The hero wanted to save a loved one from
certain death due to a rare disease. Then, he arranged to travel to the future, and after much
trouble, he was able to meet with some doctor.

Then it comes to the surprise.

The magic cure for all the diseases in one thousand years was… penicillin. The hero was shocked.
Just penicillin?

Humans had evolved in such a way that this basic antibiotic was all they needed. They were simply
different, they did things differently, and many diseases simply had vanished over the centuries.

The hero was discouraged and speechless.

The solution was not a magic pill but doing things differently that the most horrible problems did
not need a unique cure but simply to be avoided.

Our proposed recipe is:

• Start implementing automated tests. No matter how hard it sounds, it is possible, and it will be a
cultural change so profound that everything will change after that. Of course, you won’t have full
coverage in a few days, but little by little, in a year from now, you’ll have a solid safety net.

• Start doing peer reviews in code.

• Work on short task branches instead of on huge feature branches.

• The main goal is to ensure main is stable; then, you can ensure stability in all product branches by
running tests.

• In parallel: You need to talk to the business people so they start preparing for a standard version. We
are going to fight against totally customized versions for each customer. This is simply the old
developer versus salesperson fight of "don’t say yes to everything" and trying to find the right
balance.

• Teams normally have an idea (and dream) for standardization of their product, sometimes even
some work in progress.

• Implement customizations as configuration: It can be through config files and feature toggles or
through conditional compilation. Anything is better than fighting lots of parallel branches that will
never be merged.

• Then we move them to task branches + trunk. A single line of development (trunk) with short-lived (1
to 10 hour) task branches.

If they achieve it, teams will go from fighting four or more parallel branches to focusing on developing
small incremental steps that are fully tested. This doesn’t mean they’ll be deploying to customers every
day if their business doesn’t want that, but they’ll have the flexibility and the tools to do it and to be
always ready to release.

288 | Appendix C: Alternative branching strategies and solutions to frequent problems

Once they move to the new paradigm, step by step, as stated above, they won’t have more cherry picks,
no more figuring out which products are affected by what, no more how to apply these core changes to
the four product lines. All of that will simply happen auto-magically ὠ�.

No automated tests
Well, this is not an alternative branching strategy but a very common problem for many teams. So, I
thought it would be a good idea to introduce here a possible path for a solution.

Many teams learn about task branches and fall in love with the idea, only to get demotivated because
they don’t have any automated testing and hence can’t implement it.

What can you do if this is your case?

• You can implement "Branch per task with human integrator" from day one, but it will only work if
you really start implementing automatic tests.

• The manual integrator will help you implement the concept of short tasks and evangelize the whole
team on its benefits.

• Every task will be code reviewed (no reason not to do it), which will unlock collective code ownership.
Of course, you’ll catch bugs and establish a common interest in code quality. The senior members
will also continuously train the less experienced developers.

• You’ll interiorize the concept of frequent releases, short tasks, code reviews, and stable starting
points for new tasks.

• You can implement some sort of validation for each task and also manual validation of the new
versions to avoid regressions.

Of course, this is a compromise to get you started. None of this will hold together if you don’t start
building a solid foundation through automated tests. You don’t truly believe in task branches if you don’t
believe in automated testing.

To get started with tests, check the section "Automated tests passing on each task branch".

Slow builds and slow tests
By slow builds, I mean both projects that take hours to build and test suites that take hours to run. In
some industries, especially in long-life projects based on C++, it is not uncommon to find that rebuilding
the project can take 6 to 10 hours or even more. Normally, they mean a full rebuild, which is not that
common since most of the intermediate compilation objects are reused, but even a faster build in a CI
system can take a few hours.

These slow builds greatly complicate the pure task branch cycle, where every task is expected to pass
the full test suite to ensure it is ready for production.

This is the solution we propose:

• Stick to task branches and testing each branch. Since each branch can’t afford the, let’s say, 10 hours
of build and test, select a faster and smaller subset. It is always possible to select a minimum test
suite that can be run in about one hour. If the problem is just the build that takes too long, the CI
system can be set up so that it reuses most of the intermediate objects or takes advantage of a build
accelerator.

No automated tests | 289

1851

main

1931

BL937

1913 1933

main/tsk507

A full build would take 10 hours, so we
can't afford that.
Pass a subset that takes 1 hour at most

• Once the lighter test suite passes, the branch tsk507 is merged to main. It can be used as a starting
point for other task branches since it is "good enough" as it passed the minimum test suite.
Alternatively, you can stick to only allowing branch creation from the last stable build, BL937, in this
case.

290 | Appendix C: Alternative branching strategies and solutions to frequent problems

1851

main

BL937

1913

main/tsk507

The task is merged with a smaller suite.
The new changeset 1937 is good enough
to be used as the base for new branches.

1931 1937

1933

• We prefer not to create a label for each of these "candidate versions" if possible, and we simply set
an attribute "build" with the number of the current build. Every changeset on main is a valid "release
candidate".

Slow builds and slow tests | 291

1851

main

BL937

1913

main/tsk507

A new "version" (build) is created after
each task is merged. We like to mark it
with an attribute even if labels are
reserved for stable releases only.

1931 1937

1933

build:BL938 build:BL939

• After a few more tasks and bug fixes, branches are merged, the main branch will look like the next
figure shows. At this point, we have a group of four branches that can be used as the basis for a new
public release. Ideally, the smaller the group is, the better the chance is to achieve agility. But, if
builds take too long, then maybe it is good to have a group of five to ten branches. In our particular
case, our mergebot triggers the build with four branches or if no branches are waiting to be merged
(which usually happens after working hours, which ensures the mergebot uses its time wisely at
night).

1851

main

BL937

Full tests for
BL941 start
running

1931 1937

build:BL938 build:BL939

tsk507tsk504

2113 2117

bug105 tsk516

build:BL940 build:BL941

292 | Appendix C: Alternative branching strategies and solutions to frequent problems

• If the entire build and tests pass, then the changeset 2117 used to group the four branches will be
labeled accordingly, as the figure shows. Of course, meanwhile, the project continued running, and
now there are new changesets on main waiting to be released.

1851

main

BL937

Tests passed
OK, new
stable release

1931 1937 2113 2117

BL941

• In case the full build failed, the changeset 2117 wouldn’t be labeled. The team will receive a
notification, and the branch will enter "broken build status". The team’s priority will be to put a new
changeset on main with a fix for the test or tests that were broken. We don’t recommend that you go
back (at least not usually) but simply create another task to fix the issue. It doesn’t mean we don’t
strongly recommend root cause analysis to determine why something broke and whether a new test
should be in the "quick test" phase for each task to prevent these kinds of errors to reach release
tests.

This approach tries to get a valid solution for the slow build / slow test suite problem. New "release
candidates" are created continuously, and each of them is eligible to be converted in a public release if it
passes all tests.

The long-term goal is to reduce build and test times and get rid of this second stage, and stick to the
"every single changeset on main is a valid release that can be deployed" mantra. But, at least, while you
work on this and you keep it as an important goal, you can benefit from the improvements of task
branches and trunk devel.

Big Bang integration
Big Bang integrations are the root of all evil in software development. So, while I think it is good to
explain them here so you can all avoid them at all costs, I sort of fear I’m unchaining some wild sorcery.

(I have to thank my good friend and mentor, Wim Peeters, for the original graphics I’m going to display
here. In 2006, only a few months after we started Plastic SCM, we had a local presentation where we
introduced the product to companies nearby, long before it was even ready for production. Wim was so
kind to travel to Spain and share his knowledge about software configuration management.)

It all starts with an individual or entire team making contributions to a codebase. They work in isolation,
and the rest of the project doesn’t get their changes. It starts looking like this:

start
t

Big Bang integration | 293

Then as they continue evolving, more and more changes make them depart from the starting point:

start

Then, finally, one day, probably weeks or even months after they started, they decide to merge back:

start

Integration

finish

It wouldn’t be very problematic if only you did this, but if everybody else in the project was doing exactly
the same, you end up with a huge integration problem. You hit a Big Bang integration.

start

Integration

finish
Big
Trouble

This is the original reason behind the move from waterfall to an incremental process, the key reason for
agile, continuous integration, task branches, and almost any other modern practice. Projects working
this way spend far more time during the integration phase than during the actual development.

The solution is theoretically simple: If there is a painful step in the process, do it as early as possible and
as frequently as possible until it is no longer a problem.

Individuals share their changes back as soon as possible:

294 | Appendix C: Alternative branching strategies and solutions to frequent problems

start finish

And, the entire team does the same frequently:

start finish

And, as a result, frequent releases are created as a continuous flow of incremental improvement.

start finish

BL001 BL002 BL003 BL004 BL005 BL006

Big Bang no more.

Enter task branches, continuous integration, iterative software constructions, and incremental delivery.

Big Bang integration | 295

296 | Appendix C: Alternative branching strategies and solutions to frequent problems

APPENDIX D: 2 PRINCIPLES FOR
PROJECT MANAGEMENT

I consider two basic principles for project management and are deeply rooted in the "task branch" way
of thinking: Have a fallback solution and provide great visibility.

Always have a fallback solution
I think I first read about it in "Rapid Development" by Steve McConnell. Anyway, since I first heard about
this principle, it became my North Star for project management.

Things will go wrong, tasks will delay, everything will be harder than initially thought. And still, you’ll
have deadlines to meet and promises to keep.

The best solution to this problem is having a fallback solution, and the entire task branch strategy is built
around that.

Suppose you create weekly releases. Nowadays, weekly falls short and daily sounds much better, or even
a few times a day. Anyway, let’s stick to weekly releases.

If you are on a delivery week and this week’s release is broken, you will be better served by getting last
week’s stable release instead of rushing out to do last-minute changes. You will be able to negotiate,
explain what is not there, and protect your team from long hours and endless weekends.

Everybody prefers to have 100% of the 80% than 80% of nothing.

100 %

Feature 1

100 %

Feature 2

0%

Feature 3

80%

Feature 1

95%

Feature 2

75%

Feature 3

80%

The first option shows two complete features and one not even started. You can deliver two features and
negotiate. You have a fallback. The second option shows you almost have everything done, but nothing
is complete. You can’t deliver anything. You don’t have a fallback. Don’t be in that situation.

Always have a fallback solution | 297

Maximize visibility
Ensure your customers, bosses, investors, colleagues, and anyone potentially interested in your project
clearly sees that you are making progress.

Shout out loud and clear what you do, so everyone can see.

It might not sound humble, but it is much better than the opposite: Silence.

Silence must be good for unsung heroes in movies (well, they are in a movie anyway) but not that good
for projects. Silence creates anxiety, alarm, and agitation.

It is better that you report progress before you are asked to provide it.

Regular, understandable, and precise progress is crucial, in my opinion, for any project.

And there’s no better progress reporting than working software. Documents and PowerPoints come and
go, but working software stays.

Here is how everything comes together. Task branches are key to creating frequent stable releases.
Frequent stable releases create lots of undeniable visibility. And visibility builds trust.

298 | Appendix D: 2 principles for project management

Pablo Santos Luaces founded Códice Software in 2005 and has
been designing version control products for nearly 15 years. He
plays several roles including core engineering, product design,
marketing, business development, advertising and sales
operations. He had helped implement Plastic SCM to hundreds
of teams worldwide.

Version control is the operating system of software development. It is the platform that
supports all the other tools. This includes Continuous Delivery tools, testing frameworks,
project management systems and even IDEs and editors. Used correctly, version control
boosts team collaboration and productivity, and boosts team morale.

This book is ideal for developers, team leaders and development managers who need to
learn not only how to adopt Plastic SCM but proven version control practices in general.

The book focuses not only on the specifics of Plastic, but also explains different
branching patterns and ways of working, with a focus on how to combine task branches
and trunk based development to implement DevOps successfully.

@psluaces
es.linkedin.com/in/psantosl

www.plasticscm.com
@plasticscm
facebook/plasticscm

Version Control, DevOps and Agile Development with Plastic SCM

main

B

main/bug2061

D

S

R

	Version Control, DevOps and Agile Development with Plastic SCM
	Table of Contents
	Preface
	About this guide
	Conventions used in this book

	Welcome
	Starting up
	Let’s map a few concepts
	A perfect workflow
	Key steps
	Workflow dynamics
	How to implement
	Where are you now?
	Are task branches mandatory in Plastic SCM?

	What is Plastic SCM
	Why would someone consider Plastic?
	Who is using Plastic?

	What is version control
	Plastic SCM Editions
	How to install Plastic
	If you are joining an existing project
	If you are tasked to evaluate Plastic
	Detailed installation instructions

	How to get help
	Command line vs. GUI

	A Plastic SCM primer
	Get started
	3 key GUI elements
	Workspace Explorer
	Pending Changes
	Branch Explorer
	There are other views but…​

	Listing repos on different servers
	Create a repo
	Create a workspace
	Adding files
	Ignoring private files with ignore.conf
	Initial checkin

	Checkin changes
	Undoing changes
	Create a branch
	Diffing changesets and branches
	Diffing from the command line
	Diffing from the GUIs

	Merge a branch
	Merging from the GUI
	Merging from the command line
	Learn more

	Annotate/blame a file
	Annotate/blame from command line and GUI
	You annotate a given revision of a file

	Push and pull
	Learn more

	One task - one branch
	Branch per task pattern
	Branch naming convention
	Task branches are short
	Task branches are not feature branches
	Keep task branches independent
	What if you really need tasks to depend on each other
	Techniques to keep branches independent

	Checkin often and keep reviewers in mind
	Antipattern 1: Checkin only once
	Antipattern 2: Checkin for yourself
	Checkin for the reviewer
	Objection: But…​ you need to be very careful with checkins, that’s a lot of work!

	Task branches turn plans into solid artifacts that developers can touch
	Handling objections
	Task branches as units of change
	What happens when a task can’t be merged automatically?
	We don’t delete task branches
	A finished task must be ready to be deployed
	Feature toggles

	Review each task
	How we started reviewing every single task
	Reviews are crucial to prevent code from rotting
	Reviews to find bugs
	How many reviewers?
	How to actually do the reviews

	Validation – exploratory tests on each task
	A short intro to Exploratory Testing
	Validation
	A small story on our experience with Exploratory

	Some extra pros of task branches
	Colliding worlds: serial vs. parallel development
	Code is always under control
	Keep the main branch pristine
	Have well-known starting points - do not shoot moving targets!
	Enforce baseline creation
	Stop bug spreading

	Automated tests passing on each task branch
	Automated tests are the gate to main
	The Test Pyramid
	Unit tests
	Service/Integration tests
	UI tests
	Start small
	Automated tests are a safety net

	Every release is a release candidate
	Extra testing – grouping releases

	Be selfish with tests and clean code
	Trunk-based development
	What is trunk-based development
	Task branches blend well with Trunk-based development
	Why do I insist on using task branches instead of just doing checkin?

	How do task branches blend with distributed development?
	Automation, orchestration and mergebots
	What about GitFlow?
	How to learn more

	Repo layout strategies
	What is a repository?
	Repository storage

	Number of repos and maximum size
	One project, one repo
	Xlinks: Reusable components
	Keep it simple - Don’t overdesign your repo structure
	Monorepos – don’t divide and conquer
	Submodules
	Practical advice: Fantastic repos and when to create them
	Keep it simple
	Monorepos are fine
	Sometimes you need Xlinks

	Conclusion

	Centralized & distributed
	Centralized and distributed flavors and layouts
	What is distributed and centralized
	Plastic can do centralized and distributed
	Is distributed better for branching and merging?
	On-premises and Cloud
	Mix distributed, centralized and Cloud
	Multi-site
	Recommended layout
	Proxy / cache server

	How replication works - push/pull
	Globally unique changeset numbers
	How push works
	Why normal changeset numbers don’t always match, and do we need GUIDs?
	Push vs. pull

	Handling concurrent changes on replicated repos
	Concurrent changesets on different repos
	Multi-head explained
	Use pull to resolve concurrent changes on your repo

	Sources of truth in distributed development
	Single source of truth
	Shared sources of truth
	Our recommended option – single source of truth and not exact clones
	Exact clones

	Partial replicas
	Replica in Plastic vs. Git
	The dual lives of changesets
	A trick to replicate just a single changeset from main
	Merge history and partial replicas

	Xlinks with distributed repos

	Branching
	Every repository starts with a main branch
	Every changeset belongs to a branch
	Creating branches is cheap
	Branches have their own metadata
	Branch hierarchies
	Child branches
	Top level branches
	A meaningful branch hierarchy
	Subbranches

	Delete empty branches only
	Changesets can be moved to a different branch
	Diff branches

	Merge and conflict resolution
	Merge defined
	Born to merge
	Merge from a branch
	Merge from a changeset

	Merge contributors
	Repositories are graphs of changesets
	Arrow direction
	Merge contributors: source, destination and base
	Plastic always creates a changeset as result of the merge
	Graphs with potential merge conflicts

	2-way vs. 3-way merge
	2-way merge: life before common ancestors
	3-way merge
	Layout of 3-way merge tools

	Merge tracking
	Calculating the common ancestor
	Merging trees
	Changeset-based merge tracking
	Why merge tracking matters
	Recursive merge - intro
	Recursive merge – more than 2 ancestors
	Recursive merge – why it is better than just choosing one ancestor

	Plastic merge terminology
	Directory merges
	Directories are first-class citizens
	Diffing moves
	Merging moved files
	Change/delete conflict
	Add/move conflict
	Move/delete conflict
	Evil twin conflict
	Moved evil twin conflict
	Divergent move conflict
	Cycle move conflict
	Conflict resolution order – directories before files
	Automatic resolution of directory conflicts

	Merge from and merge to
	Removing changes – subtractive merge
	What is a subtractive merge
	When should you use subtractive merge?
	How to undo a merge
	Re-merging a branch that was subtracted

	Cherry picking
	Cherry pick a changeset
	Branch cherry pick
	Interval merge

	Conflicts during checkin – working on a single branch
	Locking: avoiding merges for unmergeable files
	Merging binary files
	Lock to prevent concurrent changes
	Locks only work in single branch

	Plastic rebase vs. Git rebase

	Workspaces
	Full workspaces vs. partial workspaces
	What is a workspace
	Metadata of a workspace
	Update and switch operations
	Update
	Switch
	Update to a different repo

	One repo many workspaces
	Tuning the update operation in full workspaces
	Cloaked
	Readonly and writable
	Tune EOLs

	Finding changes
	Looking for changes
	Private files and ignore.conf
	Detecting moves and renames
	Hiding changes with hidden_changes.conf

	Controlled changes - checkouts
	Notifying added, deleted and moved
	Notifying changes
	When to use controlled changes

	Advanced change tracking
	Fast change detection with watchers
	Advanced move detection

	Switch branch with changes – why it is risky
	What if you really want to override changes?

	Full workspaces are always ready to merge
	Partial workspaces
	Configuring your partial workspace
	Partial workspaces aren’t in sync with a given changeset
	Partial workspaces can checkin without downloading new changes
	Fully checked and partially checked directories
	How to convert a partial workspace into a full workspace and vice versa
	Files that require merge during checkin
	Xlinks in partial workspaces

	How to learn more
	More about Plastic SCM
	Materials for learning more essential info
	Git interop
	References

	DevOps with Plastic
	DevOps driven by mergebots
	DevOps driven by the CI system

	Blog highlights
	How we work

	Great books to read

	Appendix A: History of Plastic SCM
	It all started with a dream…​ and a challenge
	Getting real
	A dream comes true
	Códice and Plastic
	Plastic 1.0, 2.0 and first international sales
	VC time
	Growing up – the road to 4.0
	A mature solution

	Appendix B: Pattern files
	Filter pattern files
	Rule types
	Include / Exclude
	Pattern evaluation hierarchy

	Value matching pattern files
	Rule Types
	Pattern evaluation hierarchy

	Appendix C: Alternative branching strategies and solutions to frequent problems
	Branch per task with human integrator
	Cycle definition
	How it looks like in practice
	Pros & cons
	When to use it

	Mainline only for unmergeable files
	Release branches
	Maintenance branches
	A typical maintenance layout
	Simple proposal for maintenance branches
	When to merge maintenance branches back
	Problems with maintenance branches
	Where to apply bugfixes
	How we do it with Plastic SCM
	Conclusion

	Branching for product variations
	Typical challenges found in setups with multiple product branches
	Proposed solution

	No automated tests
	Slow builds and slow tests
	Big Bang integration

	Appendix D: 2 principles for project management
	Always have a fallback solution
	Maximize visibility

